Zum Hauptinhalt springen

Análisis dimensional del comportamiento hiperelástico del tubo arterial bajo un estado multiaxial de tensiones ; Dimensional analysis of the hyperelastic behavior of the arterial blood vessel subject to a multiaxial stress state

Barrera Cardenas, Helver Mauricio
In: instname:Universidad Autónoma de Occidente ; reponame:Repositorio Institucional UAO, 2016, S. 282-8
Online academicJournal

Titel:
Análisis dimensional del comportamiento hiperelástico del tubo arterial bajo un estado multiaxial de tensiones ; Dimensional analysis of the hyperelastic behavior of the arterial blood vessel subject to a multiaxial stress state
Autor/in / Beteiligte Person: Barrera Cardenas, Helver Mauricio
Link:
Zeitschrift: instname:Universidad Autónoma de Occidente ; reponame:Repositorio Institucional UAO, 2016, S. 282-8
Veröffentlichung: Universidad del Norte, 2016
Medientyp: academicJournal
DOI: 10.14482/inde.34.2.6725
Schlagwort:
  • Cardiovascular mechanics
  • Hyperelasticity
  • Soft tissue
  • Arterial tube
  • Mecánica cardiovascular
  • Hiperelasticidad
  • Tejidos blandos
  • Tubo arterial
  • Elasticity
  • Bioengineering
  • Bioingeniería
  • Elasticidad
  • Collagen
  • Biomedical engineering
  • Tissues
  • Colágeno
  • Ingeniería biomédica
  • Tejidos
  • Time: Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
Sonstiges:
  • Nachgewiesen in: BASE
  • Sprachen: Spanish; Castilian
  • Collection: Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)
  • Document Type: article in journal/newspaper
  • File Description: application/pdf; páginas 354-369
  • Language: Spanish; Castilian
  • Relation: Ingeniería y Desarrollo, volumen 34, número 2, páginas 354-369, (july- december, 2016); G. Maurice, X. Wang, B. Lehalle, J.F. Stoltz, "Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum", J. Mal. Vasc., vol. 23, n° 4, pp. 282-8, 1998; D. Brands, A. Klawonn, O. Rheinbach, J. Schroder, "Modelling of convergence in arterial wall simulations using a parallel FETI solution strategy", Comput. Methods. Biomech. Biomed. Eng., vol. 11, n° 5, pp. 569-583, 2008; F. Mosora, A. Harmant, C. Bernard, A. Fossion, T. Pochet, J. Juchmes, S. Cescotto, "Modelling the arterial wall by finite elements", Arch. Int. Physiol. Biochim. Biophys., vol. 101, n° 3, pp. 185-191, 1993; T. C. Gasser, C.A.J. Schulze-Bauer, G.A. Holzapfel, "A three-dimensional finite element model for arterial clamping", ASME: J. Biomech. Eng., n° 124, pp. 355-363, 2002; S. Till, "The effect of different artery wall models on arterial blood flow simulation", in First Hungarian conference on biomechanics, Budapest 2003; P. K. Siogkas, A. I. Sakellarios, T. P. Exarchos, K. Stefanou, D. I. Fotiadis, K. Naka, L. Michalis, N. Filipovic, O. Parodi, "Blood flow in arterial segments: rigid vs. deformable Wall simulations", J. Serbian Soc. Comp. Mech., vol. 5, n° 1, pp. 69-77, 2011; G. A. Holzapfel, T.C. Gasser, M. Stadler, "A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis," Eur. J. Mech. A-Solids, n° 21, pp.441-463, 2002; T. C. Gasser, G. A. Holzapfel, "A rate-independent elastoplastic constitutive model for (biological) fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation", Comput. Mech., n° 29, pp.340-360, 2002; C. A. J. Schulze-Bauer, G. A. Holzapfel, "Determination of constitutive equations for human arteries from clinical data", J. Biomech., n° 36, pp. 165-169, 2003; E. Kuhl, R. Maas, G. Himpel, A. Menzel, "Computational modelling of arterial wall growth", Biomech. Model Mechan., vol. 6, n° 5, pp. 321-331, 2007; T. C. Gasser, R. W. Ogden, G. A. Holzapfel, "Hyperelastic modelling of arterial layers with distributed collagen fibre orientations", J. R. Soc. Interface, n° 3, pp. 15-35, 2006; G. A. Holzapfel, "Compressible hyperelasticity" in Nonlinear Solid Mechanics: A Continuum Approach for Engineering, ch. 6. Chichester, UK: John Wiley & Sons, 2000, pp. 222-278; G.A. Holzapfel, T.C. Gasser, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models", J. Elasticity, n° 61, pp. 1-48, 2000; M. Barrera, "Inflation-extension of a hyperelastic hollow cylinder as a model of the arterial tube", en IX Congreso Colombiano de Métodos Numéricos, Cali, Colombia, 2013; M. Barrera, "Effect of collagen fiber distribution on the inflation-extension of an arterial tube", en IX Congreso Colombiano de Métodos Numéricos, Cali, Colombia, 2013; J. Bonet, R. D. Wood, "Kinematics", in Nonlinear Continuum Mechanics for Finite Element Analysis, ch. 4. 1st ed. Cambridge, UK: Cambridge University Press, 2008; Y. C. Fung, "Bioviscoelastic solids", in Biomechanics: Mechanical Properties of Living Tissues, ch. 7, 2nd ed.: Springer, 1993, pp. 242-277; T. Belytschko, "Constitutive models", in Nonlinear Finite Elements for Continua and Structures, ch. 5, Chichester, UK: John Wiley & Sons, 2000, pp. 225-239; G. Szekely, G. I. Csecsei, "Anteposition of the Internal Carotid Artery for Surgical Treatment of Kinking", Surg. Neurol., n° 56, pp. 124-126, 2001; G. Illuminati, J. B. Ricco, F. G. Calio, A. D'Urso, G. Ceccanei, F. Vietri, "Results in a consecutive series of 83 surgical corrections of symptomatic stenotic kinking of the internal carotid artery," Surgery, n° 143, pp. 134-139, 2008; E. Ballotta, G. Thiene, C. Batracchini, M. Ermani, C. Militello, G. Da Giau, B. Barbon, A. Angelini, "Surgical vs. medical treatment for isolated internal carotid artery elongation with coiling or kinking in symptomatic patients: A prospective randomized clinical study", J. Vasc. Surg., n° 42, pp. 838-846, 2005; I. Adaletli, S. Kurugoglu, V. Davutoglu, H. Ozer, K. Besirli, A.G. Sayin, "Pseudocoarctation", Can. J. Cardiol., vol. 23, n° 8, pp. 675-676, 2007; W. B. Wang, G. M. Lin, "Pseudocoarctation and coarctation", Int. J. Cardiol., n° 133, pp. 62-64, 2009; Barrera, M. (2016). Análisis dimensional del comportamiento hiperelástico del tubo arterial bajo un estado multiaxial de tensiones. Ingeniería y Desarrollo, 34(2), 354-369. http://dx.doi.org/10.14482/inde.34.2.6725; 2145-9371 (en linea); 0122-3461 (impresa); http://hdl.handle.net/10614/11115; http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-34612016000200006; http://rcientificas.uninorte.edu.co/index.php/ingenieria/article/viewArticle/6725/9026; http://dx.doi.org/10.14482/inde.34.2.6725
  • Rights: Derechos Reservados - Universidad Autónoma de Occidente ; https://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess ; Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -