Zum Hauptinhalt springen

音樂及DNA序列之多重碎形分析 ; Multifractal Analyses of Music and Nucleotide Sequences in DNA

蘇致遠 ; Su, Zhi-Yuan ; et al.
In: 參考文獻 [1] 万柏坤 (1992),「 涨落之谜」,科学,44(3):45-46。 [2] 户欣、陈惠民、與李衍达合著 (1999),「细菌DNA序列中的长程相关性」,清华大学学报(自然科学版),39(7):98-102。 [3] 刘永信、郑美红、與马克健合著 (1994),「音乐的碎形结构」,内蒙古大学学报(自然科学版),25(4):408-413。 [4] 孙博文,碎形软件,< Academic Press. [77] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Stanley, H. E., Stanley, M. H. R. and Simons, M. (1993a) “Fractal Landscapes and Molecular Evolution: Modeling the Myosin Heavy Chain Gene Family.” Biophys. J. 65:2673-2679. [78] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1993b) “Generalized Levy-Walk Model for DNA Nucleotide Sequences.” Phys. Rev., E 47:4514-4523. [79] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M., Sciortino, F. and Stanley, H. E. (1993c) “Long-Range Power-Law Correlations in DNA.” Phys. Rev. Lett. 71:1776. [80] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K. and Stanley, H. E. (1994) “Fractals in Biology and Medicine: From DNA to Heartbeat.” In Fractals in Science, ed. Bunde, A. and Havlin, S., 49-87 New York: Springer-Verlag. [81] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Mantegna, R. N., Matsa, M. E., Peng, C.-K., Simons, M. and Stanley, H. E. (1995) “Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis.” Phys. Rev., E 51:5084- 5091. [82] Buldyrev, S. V., Dokholyan, N. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Stanley, H. E. and Viswanathan, G. M. (1998) “Analysis of DNA Sequences Using Methods of Statistical Physics.” Physica, A 249:430-438. [83] Burge, C. and Karlin, S. (1997) “Prediction of Complete Gene Structures in Human Genomic DNA.” Journal of Molecular Biology 268:78-94. [84] Burset, M. and Guigo, R. (1996) “Evaluation of Gene Structure Prediction Programs.” Genomics 34:353-367. [85] Campbell, P. (1986) “The Music of Digital Computer.” Nature 324:523-528. [86] Campbell, P. (1987) “Replies: Is There Such a Thing as Fractal Music?” Nature 325:766. [87] Chhabra, A. and Jensen, R. V. (1989) “Direct Determination of the Singularity Spectrum.” Phys. Rev. Lett. 62:1327-1330. [88] Chhabra, A., Meneveau, C., Jensen, R. V. and Sreenivasan, K. R. (1989) “Direct Determination of the Singularity Spectrum and its Application to Fully Developed Turbulence.” Phys. Rev., A 40:5284-5294. [89] Chhabra, A. (1989) “The Thermodynamic Formalism of Multifractals and its Applications to Chaotic Dynamical Systems and Turbulence.” Ph.D. Thesis, Yale University. [90] Chatzidimitriou-Dreismann, C. A. and Larhammar, D. (1993) “Long-Range Correlations in DNA.” Nature 361:212-213. [91] Chatzidimitriou-Dreismann, C. A., Streffer, R. M. F. and Larhammar, D (1994a) “Variations in Base Pair Composition and Associated Long-Range Correlations in DNA Sequences-Computer Simulation Results.” Biochim. Biophys. Acta 1217:365-371. [92] Chatzidimitriou-Dreismann, C. A., Streffer, R. M. F. and Larhammar, D (1994b) “A Quantitative Test of Long-Range Correlations and Compositional Fluctuations in DNA Sequences.” Eur. J. Biochem. 224:181-187. [93] Christian, G. (1998) Fractal and Chaotic Properties of Earthquakes, New York: Springer. [94] Churchill, G. A. (1989) “Stochastic Models for Heterogeneous DNA Sequences.” Bull. Math. Biol. 51:79-94. [95] Claverie, J.-M. (1997) “Computational Methods for the Identification of Genes in Vertebrate Genomic Sequences.” Human Molecular Genetics 6:1735-1744. [96] Clay, O., Caccio, S., Zoubak, S., Mouchiroud, D., and Bernardi, G. (1996) “Human coding and noncoding DNA: compositional Correlations.” Molecular Phylogenetics and Evolition 5:2-12. [97] Cohen, J. E. (1962) “Information Theory and Music.” Behavioral Science 7:137-163. [98] Coleman, P. H. and Pietronero L. (1992) “The Fractal Structure of the Universe.” Phys. Rep. 213:311-389. [99] Coleman, P. H. (1996) “Fractals and the Universe.” In Fractal Geometry and Analysis: The Mandelbrot Festschrift, Curacao 1995., ed. Evertsz, C. J. G., Peitgen, H.-O. and Voss, R. F., 163-175 Singapore: World Scientific. [100] Collet, P., Lebowitz, J. L. and Porzio, A. (1987) “The Dimension Spectrum of Some Dynamical Systems.” J. Stat. Phys. 47:609-644. [101] Coons, E. and Krahenbuehl, D. (1958) “Information as a Measure of Structure in Music.” Journal of Music Theory 2:127-161. [102] Crownover, R. M. (1995) “Random Fractals.” In Introduction to Fractals and Chaos, 229-270 Boston: Jones and Bartlett. [103] de Arcangelis, L., Redner, S. and Coniglio, A. (1986) “Multiscaling Approach in Random Resistor and Random Superconducting Networks.” Phys. Rev., B 34: 4656-4673. [104] Dekking, M., Vehel, J. L., Lutton, E. and Tricot, C. ed. (1999) Fractals: Theory and Applications in Engineering, New York: Springer. [105] Deschavanne, P. J., Giron, A. Vilain, J., Fagot, G. and Fertil, B. (1999) “Genomic Signature: Characterization and Classification of Species Assessed by Chaos Game Representation of Sequences.” Mol. Biol. Evol. 16:1391-1399. [106] Dewey, T. G. (1997) Fractals in Molecular Biophysics, New York: Oxford University Press. [107] Dodge, C. and Bahn, C. R. (1986) “Musical Fractals.” Byte (June): 185-196. [108] Dodge, C. (1988) “Profile: A Musical Fractal.” Computer Music Journal 12(3): 10-14. [109] Dodon, G., Vandergheynst, P., Levoir, P., Cordier, C. and Marcourt, L. (2000) “Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences.” J. Theor. Biol. 206:323- 326. [110] Dong, S. and Searls, D. B. (1994) “Gene Structure Prediction by Linguistic Methods.” Genomics 23:540-551. [111] Duret, L., Mouchiroud, D. and Gautier, C. (1995) “Statistical Analysis of Vertebrate Sequences Reveals that Long Genes are Scarce in GC-Rich Isochores.” J. Mol. Evol., 40:308-317. [112] Dutta, C. and Das, J. (1992) “Mathematical Characterization of Chaos Game Representation: New Algorithms for Nucleotide Sequence Analysis.” J. Mol. Biol. 228:715-719. [113] Ebeling, W., Poschel, T. and Albrecht, K.-F. (1995) “Entropy, Transinformation and Word Distribution of Information-Carrying Sequences.” International Journal of Bifurcation and Chaos 5:51-61. [114] Edgar, G. A. (1990) Measure, Topology, and Fractal Geometry, New York: Springer- Verlag. [115] Fagarazzi, B. (1991) “A Fractal Approach to Musical Composition” In Fractals in the Fundamental and Applied Sciences, ed. Peitgen, H-O, Henriques, J. M., and Penedo, L. F., 135-146 New York: Elsevier Science. [116] Falconer, K. J. (1990) Fractal Geometry: Mathematical Foundations and Applications, New York: Wiley. [117] Falconer, K. J. (1997) Techniques in Fractal Geometry, New York: Wiley. [118] Farber, R., Lapedes, A. and Sirotkin, K. (1992) “Determination of Eukaryotic Protein Coding Regions Using Neural Networks and Information Theory.” J. Mol. Biol. 226:471-479. [119] Farmer, J. D. (1982a) “Information Dimension and Probabilistic Structure of Chaos.” Zeitschrift fuer Naturforschung, Sec. A: Physical Sciences. 37:1304- 1325. [120] Farmer, J. D. (1982b) “Chaotic Attractors of an Infinite-Dimensional Dynamical System.” Physica, D 4:366-393. [121] Farmer, J. D., Ott, E. and Yorke, J. A. (1983) “The Dimension of Chaotic Attractors.” Physica, D 7:158-180. [122] Feder, J. (1988) “Random Walks and Fractals.” In Fractals, 163-183 New York: Plenum Press. [123] Feigenbaum, M.J. (1987a) “Some Characterizations of Strange Sets.” J. Stat. Phys. 46:919-924. [124] Feigenbaum, M.J. (1987b) “Scaling Spectra and Return Times of Dynamical Systems.” J. Stat. Phys. 46:925-932. [125] Feng, YZ, Zhuang, YT and Pan, YH (2001) “Query Similar Music by Correlation Degree.” Lecture Notes in Computer Science 2195:885-890. [126] Fickett, J. W., Torney, D. C. and Wolf, D. R. (1992) “Base Compositional Structure of Genomes.” Genomics 13:1056-1064. [127] Fleischmann, M., Tildesley, D. J. and Ball, R. C. ed. (1989) Fractals in the Natural Sciences: A Discussion, Princeton: Princeton University Press. [128] Fourcade, B. and Tremblay, A.-M. S. (1987) “Anomalies in the Multifractal Analysis of Self-Similar Resistor Networks.” Phys. Rev., A 36: 2352-2358. [129] Frisch, U. and Parisi, G. (1985) “On the Singularity Structure of Fully Developed Turbulence.” In Turbulence and Predictability in Geophysical Fluid Dynamics, ed. Ghil, M., Benzi, R., and Parisi, G., 84-88 Amsterdam: North-Holland. [130] Frontali, C. and Pizzi, E. (1999) “Similarity in Oligonucleotide Usage in Introns and Intergenic Regions Contributes to Long-Range Correlation in the Caenorhabditis Elegans Genome.” Gene 232:87-95. [131] Gallager, R. G. (1968) Information Theory and Reliable Communication, New York; Wiley. [132] Garcia-Ruiz, J.-M., Louis, E., Meakin, P. and Sander, L. M. ed. (1993) Growth Patterns in Physical Sciences and Biology, New York: Plenum Press. [133] Gardner, M. (1978) “Mathematical Games: White and Brown Music, Fractal Curves and One-Over-F Fluctuations.” Scientific American 238(4): 16-32. [134] Gates, M. A. (1986) “A Simple Way to Look at DNA.” J. Theor. Biol. 119: 319-328. [135] Gelfand, M. S. and Roytberg, M. A. (1993) “Prediction of the Exon-Intron Structure by a Dynamic Programming.” BioSystems 30:173-182. [136] Gelfand, M. S., Podolsky, L. I., Astakhova, T. V. and Roytberg, M. A. (1996) “Recognition of Genes in Human DNA Sequences.” Journal of Computational Biology 3:223-234. [137] Glazier, J. A., Raghavachari, S., Berthelsen, C. L. and Skolnick, M. H. (1995) “Reconstructing Phylogeny from the Multifractal Spectrum of Mitochondrial DNA.” Phys. Rev., E 51:2665-2668. [138] Gleick, J. (1987) Chaos: Making a New Science, New York: Viking. [139] Gogins, M. (1991) “Iterated Functions Systems Music.” Computer Music Journal 15(1): 40-48. [140] Goldberger, A. L., Rigney, D. R. and West, B. J. (1990) “Chaos and Fractals in Human Physiology.” Scientific American 262(2): 42-49. [141] Grassberger, P. (1981) “On the Hausdorff Dimension of Fractal Attractors.” J. Stat. Phys. 26:173-179. [142] Grassberger, P. (1983a) “On the Fractal Dimension of the Henon Attractor.” Phys. Lett., Sect. A 97:224-226. [143] Grassberger, P. (1983b) “Generalized Dimensions of Strange Attractors.” Phys. Lett., Sect. A 97:227-230. [144] Grassberger, P. and Procaccia, I. (1983a) “Characterization of Strange Attractors.” Phys. Rev. Lett. 50:346-349. [145] Grassberger, P. and Procaccia, I. (1983b) “Measuring the Strangeness of Strange Attractors.” Physica, D 9:189-208. [146] Grassberger, P. and Procaccia, I. (1984) “Dimensions and Entropies of Strange Attractors from a Fluctuating Dynamics Approach.” Physica, D 13:34-54. [147] Grassberger, P. (1985) “Generalizations of the Hausdorff Dimension of Fractal Measures.” Phys. Lett., Sect. A 107:101-105. [148] Graur, D. and Li, W.-H. (2000) Fundamentals of Molecular Evolution, 2rd ed., Sunderland: Sinauer. [149] Grosse, I., Herzel, H., Buldyrev, S. V. and Stanley, H. E. (2000) “Species Independence of Mutual Information in Coding and Noncoding DNA.” Phys. Rev., E 61:5624-5629. [150] Grosse, I. (2000) “Applications of Statistical Physics and Information Theory to the Analysis of DNA Sequences.” Ph.D. Thesis, Boston University [151] Guharay, S., Hunt, B. R., Yorke, J. A. and White, O. R. (2000) “Correlations in DNA Sequences across the Three Domains of Life.” Physica, D 146:388-396. [152] Guigo, R., Knudsen, S., Drake, N. and Smith, T. (1992) “Prediction of Gene Structure.” Journal of Molecular Biology 226:141-157. [153] Gutierrez, J. M., Iglesias, A., Rodriguez, M. A., Burgos, J. D., Estevez, C. M. and Moreno, P. (1998) “Analyzing the Multifractal Structure of DNA Nucleotide Sequences.” In Chaos and Noise in Biology and Medicine: Proceedings of the International School of Biophysics, ed. Barbi, M.and Chillemi, S., 315-319. Singapore: World Scientific. [154] Gutierrez, J. M., Rodriguez, M. A. and Abramson, G. (2001) “Multifractal Analysis of DNA Sequences Using a Novel Chaos-Game Representation.” Physica, A 300:271-284. [155] Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. and Shraiman, B. I. (1986) “Fractal Measures and their Singularities: the Characterization of Strange Sets.” Phys. Rev., A 33:1141-1151. [156] Hao, B.-L. (2000) “Fractals from Genomes—Exact Solutions of a Biology-Inspired Problem.” Physica, A 282:225-246. [157] Hao, B.-L., Lee, H. C. and Zhang, S.-Y. (2000) “Fractals Related to Long DNA Sequences and Complete Genomes.” Chaos solitons fractals 11:825-836. [158] Hastings, H. M. and Sugihara, G. (1993) Fractals: A User's Guide for the Natural Sciences, New York: Oxford University Press. [159] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1995a) “Statistical and Linguistic Features of DNA Sequences.” Fractals 3:269-284. [160] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1995b) “Statistical Properties of DNA Sequences.” In Fractal Reviews in the Natural and Applied Sciences: Proceedings of the Third IFIP Working Conference on Fractals in the Natural and Applied Sciences., ed. Novak, M. M., 1-11 New York: Chapman & Hall. [161] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Ossadnik, S. M., Peng, C.-K., Simons, M. and Stanley, H. E. (1995c) “Fractals in Biology and Medicine.” Chaos solitons fractals 6:171-201. [162] Havlin, S., Buldyrev, S. V., Bunde, A., Goldberger, A. L., Ivanov, P. Ch., Peng, C.-K. and Stanley H. E. (1999) “Scaling in Nature: From DNA through Heartbeats to Weather” Physica, A 273:46-69. [163] Hayashi, K. and Munakata, N. (1984) “Basically Musical.” Nature 310:96. [164] Henderson, J., Salzberg, S. and Fasman, K. H. (1997) “Finding Genes in DNA with a Hidden Markov Model.” Journal of Computational Biology 4:127-141. [165] Hentschel, H. G. E. and Procaccia, I. (1983) “The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors.” Physica, D 8: 435-444. [166] Henderson-Sellers, B. and Cooper, D. (1993) “Has Classical Music a FractalNature? A Reanalysis.” Computers and the Humanities 27:277-284. [167] Herzel, H. and Große, I. (1995) “Measuring Correlations in Symbol Sequences.” Physica, A 216:518-542. [168] Herzel, H. and Große, I. (1997) “Correlations in DNA Sequences: The Role of Protein Coding Segments.” Phys. Rev., E 55:800-810. [169] Hilborn, R. C. (1994) Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, New York: Oxford University Press. [170] Hill, K. A., Schisler, N. J. and Singh, S. M. (1992) “Chaos Game Representation of Coding Regions of Human Globin Genes and Alcohol Dehydrogenase Genes of Phylogenetically Divergent Species.” J. Mol. Evol. 35:261-269. [171] Hiller, Jr., L. A. and Isaacson, L. M. (1959) Experimental Music, New York: McGraw-Hill Book Company. [172] Hiller, L.and Bean, C. (1966) “Information Theory Analyses of Four Sonata Expositions.” Journal of Music Theory 10:96-137. [173] Hiller, L.and Fuller, R. (1967) “Structure and Information in Webern’s Symphonie, Op. 21.” Journal of Music Theory 11:60-115. [174] Holste, D., Grosse, I. and Herzel, H. (2001) “Statistical Analysis of the DNA Sequence of Human Chromosome 22.” Phys. Rev., E 64:041917-1-041917-9. [175] Hsu, K. J. and Hsu, A. J. (1990) “Fractal Geometry of Music.” Proc. Natl. Acad. Sci. U. S. A. 87:938-941. [176] Hsu, K. J. and Hsu, A. J. (1991) “Self-Similarity of the Noise Called Music.” Proc. Natl. Acad. Sci. U. S. A. 88:3507-3509. [177] Hsu, K. J. (1993) “Fractal Geometry of Music: From Bird Songs to Bach” In Applications of Fractals and Chaos, ed. Crilly, A. J., Earnshaw, R. A., and Jones, H., 21-39 New York: Springer-Verlag. [178] Hutchinson, G. B. and Hayden, M. R. (1992) “The Prediction of Exons through an Analysis of Spliceable Open Reading Frames.” Nucleic Acids Res. 20:3453-3462. [179] Iannaccone, P. M. and Khokha, M. ed. (1996) Fractal Geometry in Biological Systems: An Analytical Approach, Boca Raton: CRC Press. [180] Isohata, Y. and Hayashi, M. (2003) “Power Spectrum and Mutual Information Analyses of DNA Base (Nucleotide) Sequences.” J. Phys. Soc. Jpn. 72: 735- 742. [181] Israeloff, N. E., Kagalenko, M. and Chan, K. (1996) “Can Zipf Distinguish Language from Noise in Noncoding DNA?” Phys. Rev. Lett. 76:1976. [182] Jeffrey, H. J. (1990) “Chaos Game Representation of Gene Structure.” Nucleic Acids Res. 18:2163-2170. [183] Jeffrey, H. J. (1992) “Chaos Game Visualization of Sequences.” Comput. Graph. 16:25-33. [184] Jensen, M. H., Kadanoff, L. P. and Procaccia, I. (1987) “Scaling Structure and Thermodynamics of Strange Sets.” Phys. Rev., A 36:1409-1420. [185] Karlin, S. and Brendel, V. (1993) “Patchiness and Correlations in DNA Sequences.” Science 259:677-680. [186] Katzen, D. and Procaccia, I. (1987) “Phase Transitions in the Thermodynamic Formalism of Multifractals.” Phys. Rev. Lett. 58:1169-1172. [187] Klimontovich, Y. L. and Boon J. –P. (1987) “Natural Flicker Noise ( Noise) in Music.” Europhys. Lett. 3:395-399. [188] Knopoff, L. and Hutchinson, W. (1981) “Information Theory for Musical Continua.” Journal of Music Theory 25:17-44. [189] Knopoff, L. and Hutchinson, W. (1983) “Entropy as a Measure of Style: The Influence of Sample Length.” Journal of Music Theory 27:75-97. [190] Kohmoto, M. (1988) “Entropy Function for Multifractals.” Phys. Rev., A 37: 1345-1350. [191] Korolev, S. V., Solovyev, V. V. and Tumanyan, V. G. (1992) “New Method in the Overall Search for the Functional Regions of DNA Using the Fractal Representation of Nucleotide Texts.” Biophysics 37: 733-742. [192] Kotlar, D. and Lavner, Y. (2003) “Gene Prediction by Spectal Rotation Measure: A New Method for Identifying Protein-Coding Regions.” Genome Research 13: 1930-1937. [193] Krahenbuehl, D. and Coons, E. (1959) “Information as a Measure of Experience in Music.” Journal of Aesthetics and Art Criticism 17: 510-522. [194] Larhammar, D. and Chatzidimitriou-Dreismann, C. A. (1993) “Biological Origins of Long-Range Correlations and Compositional Variations in DNA.” Nucleic Acids Res. 21:5167-5170. [195] Lee, J. and Stanley, H. E. (1988) “Phase Transition in the Multifractal Spectrum of Diffusion-Limited Aggregation.” Phys. Rev. Lett. 61:2945-2948. [196] Lewin, R. (1991) “The fractal structure of music.” New Scientist 130(May 4):19. [197] Li, W. (1991a) “Absence of Spectra in Dow Jones Daily Average.” International Journal of Bifurcation and Chaos 1:583-597. [198] Li, W. (1991b) “Expansion-Modification Systems: A Model for Spatial Spectra.” Phys. Rev., A 43:5240-5260. [199] Li, W. (1992) “Generating Nontrivial Long-Range Correlations and Spectra by Replication and Mutation.” International Journal of Bifurcation and Chaos 2:137-154. [200] Li, W. and Kaneko, K. (1992) “Long-Range Correlation and Partial Spectrum in a Noncoding DNA Sequence.” Europhys. Lett. 17:655-660. [201] Li, W., Marr, T. G. and Kaneko, K. (1994) “Understanding Long-Range Correlations in DNA Sequences.” Physica, D 75:392-416. [202] Li, W. (1997) “The Study of Correlation Structures of DNA Sequences: A Critical Review.” Comput. Chem. 21:257-271. [203] Losa G. A., Nonnenmacher, T., Merlini, D. and Weibel, E. R. ed. (1998) Fractals in Biology and Medicine Volume II, Boston: Birkhuser Verlag. [204] Lovejoy, S. (1982) “Area-Perimeter Relation for Rain and Cloud Areas.” Science 216:185-187. [205] Lu, X., Sun, Z., Chen, H. and Li, Y. (1998) “Characterizing Self-Similarity in Bacteria DNA Sequences.” Phys. Rev., E 58:3578-3584. [206] Luo, L. and Tsai, L. (1988) “Fractal Dimension of Nucleic Acid Sequences and its Relation.” Chinese Phys. Lett. 5(9): 421-424. [207] Luo, L. and Lee, W. (1998) “Statistical Correlation of Nucleotides in a DNA Sequence.” Phys. Rev., E 58:861-871. [208] Madden, C. (1999) Fractals in Music: Introductory Mathematics for Musical Analysis, Salt Lake City: High Art Press. [209] Maddox, J. (1992) “Long-Range Correlations within DNA.” Nature 358:103. [210] Madison, G. (2000) “Properties of Expressive Variability Patterns in Music Performances.” J. New Mus. Res. 29:335-356. [211] Manaris, B., Vaughan, D., Wagner, C. Romero, J. and Davis, R. B. (2003) “Evolutionary Music and the Zipf-Mandelbrot Law: Devloping Fitness Functions for Pleasant Music.” Lecture Notes in Computer Science 2611:522-534. [212] Mandelbrot, B. B. (1967) “How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.” Science 156:636-638. [213] Mandelbrot, B. B. and Van Ness J. W. (1968) “Fractional Brownian Motions, Fractional Noises and Applications.” SIAM Review 10(4): 422-437. [214] Mandelbrot, B. B. and Wallis J. R. (1969) “Some Long-Run Properties of Geophysical Records.” Water Resour. Res. 5:321-340. [215] Mandelbrot, B. B. (1974) “Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier.” J. Fluid Mech. 62:331-358. [216] Mandelbrot, B. B. (1977) Fractals: Form, Chance, and Dimension, San Francisco: Freeman. [217] Mandelbrot, B. B. (1983) The Fractal Geometry of Nature, New York: Freeman. [218] Mandelbrot, B. B. (1988) “An Introduction to Multifractal Distribution Functions.” In Random Fluctuations and Pattern Growth: Experiments and Models, ed. Stanley, H. E. and Ostrowsky, N., 279-291. Boston: Kluwer Academic Publishers. [219] Mandelbrot, B. B. (1989a) “A Class of Multinomial Multifractal Measures with Negative (Latent) Values for the "Dimension"” In Fractals' Physical Origin and Properties, ed. Pietronero, L., 3-29. New York: Plenum Press. [220] Mandelbrot, B. B. (1989b) “Multifractal Measures, Especially for the Geophysicist.” In Fractals in Geophysics., ed. Scholz, C. H. and Mandelbrot, B. B., 5-42. Basel: Birkhauser Verlag. [221] Mandelbrot, B. B. (1989c) “The Principles of Multifractal Measures.” In The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, ed. Avnir, D., 45-51. Chichester: Wiley. [222] Mandelbrot, B. B. (1990) “Negative Fractal Dimensions and Multifractals.” Physica, A 163:306-315. [223] Mandelbrot, B. B. (1991) “Random Multifractals: Negative Dimensions and the Resulting Limitations of the Thermodynamic Formalism.” Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci. 434:79-88. [224] Mandelbrot, B. B. and Evertsz, C. J. G. (1991) “Multifractality of the Harmonic Measure on Fractal Aggregates, and Extended Self-Similarity.” Physica, A 177:386-393. [225] Mandelbrot, B. B. (1995) “Negative Dimensions and Hölders, Multifractals and their Hölder Spectra, and the Role of Lateral Preasymptotics in Science.” In The Journal of Fourier Analysis and Applications, Kahane Special issue, 1995., ed. Benedetto, J. J., 409-432. Boca Raton: CRC Press. [226] Mandelbrot, B. B. (1997) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, New York: Springer. [227] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1994) “Linguistic Features of Noncoding DNA Sequences.” Phys. Rev. Lett. 73:3169-3172. [228] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1995) “Systematic Analysis of Coding and Noncoding DNA Sequences Using Methods of Statistical Linguistics.” Phys. Rev., E 52: 2939-2950. [229] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1996) “Mantegna et al. Reply.” Phys. Rev. Lett. 76: 1979-1981. [230] Manzara, L. C., Witten, I. H. and James, M. (1992) “On the Entropy of Music: An Experiment with Bach Chorale Melodies.” Leonardo Music Journal 2: 81- 88. [231] Mathe, C., Sagot, M.-F., Schiex, T. and Rouze. P. (2002) “Current Methods of Gene Prediction, Their Strengths and Weaknesses.” Nucleic Acids Res. 30:4103-4117. [232] McCauley, J. L. (1990) “Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence.” Phys. Rep. 189:225-266. [233] Meakin, P. (1988) “The Growth of Fractal Aggregates and their Fractal Measures. ” Phase Transitions and Critical Phenomena 12:336-489. [234] Meakin, P. (1998) Fractals, Scaling, and Growth Far from Equilibrium, New York: Cambridge University Press. [235] Meneveau, C. (1989) “The Multifractal Nature of Turbulence.” Ph.D. Thesis, Yale University. [236] Meneveau, C. and Sreenivasan, K. R. (1989) “Measurement of from Scaling of Histograms, and Applications to Dynamical Systems and Fully Developed Turbulence.” Phys. Lett., Sect. A 137:103-112. [237] Meneveau, C. and Sreenivasan, K. R. (1991) “The Multifractal Nature of Turbulent Energy Dissipation.” J. Fluid Mech. 224:429-484. [238] Meyer, L. B. (1957) “Meaning in Music and Information Theory.” Journal of Aesthetics and Art Criticism 15:412-424. [239] Meyer, L. B. (1961) “On Rehearing Music.” Journal of the American Musicological Society 14:257-267. [240] Milanesi, L., Kolchanovm N. A., Rogozin, I. B., Ischenko, I. V., Kel, A. E., Orlov, Y. L., Ponomarenko, M. P. and Vezzoni, P. (1993) “GenViewer: A Computing Tool for Protein-Coding Regions Prediction in Nucleotide Sequences.” In The Second International Conference on Bioinformatics, Supercomputing and the Human Genome, ed. Lim, H. A. et al., 573-587 Singapore:World Scientific. [241] Mohanty, A. K. and Narayana Rao, A. V. S. S. (2000) “Factorial Moments Analyses Show a Characteristic Length Scale in DNA Sequences.” Phys. Rev. Lett. 84:1832-1835. [242] Mouchiroud, D., Donofrio, G., Aissani, B. Macaya, G., Gautier, C. and Bernardi, G. (1991) “The Distribution of Genes in the Human Genome.” Gene 100:181-187. [243] Munakata, N. and Hayashi, K. (1995) “Gene Music: Tonal Assignments of Bases and Amino Acids.” In Visualizing Biological Information, ed. Pickover, C. A., 72-83 Singapore: World Scientific. [244] Munson, P. J., Taylor, R. C. and Michaels, G. S. (1992) “DNA Correlations.” Nature 360:636. [245] Murray, K. B., Gorse D. and Thornton, J. M. (2002) “Wavelet Transforms for the Characterization and Detection of Repeating Motifs.” J. Mol. Biol. 316: 341-363. [246] Muzy, J. F., Bacry, E. and Arneodo, A. (1993) “Multifractal Formalism for Fractal Signals: The Structure-Function Approach Versus the Wavelet-Transform Modulus-Maxima Method.” Phys. Rev., E 47:875-884. [247] Muzy, J. F., Bacry, E. and Arneodo, A. (1994) “The Multifractal Formalsim Revisited with Wavelets.” International Journal of Bifurcation and Chaos 4: 245-302. [248] Nee, S. (1992) “Uncorrelated DNA Walks.” Nature 357:450. [249] Nonnenmacher, T. F., Losa, G. A. and Weibel, E. R. ed. (1994) Fractals in Biology and Medicine Volume I, Boston: Birkhauser Verlag. [250] Ohno, S. and Ohno, M. (1986) “The All Pervasive Principle of Repetitious Recurrence Governs Not Only Coding Sequence Construction But Also Human Endeavor in Musical Composition.” Immunogenetics 24:71-78. [251] Ohno, S. (1993) “Patterns in Genome Evolution.” Current Opinion in Genetics and Development 3:911-914. [252] Ohno, S. (1988) “On Periodicities Governing the Construction of Genes and Proteins.” Animal Genetics 19:305-316. [253] Oiwa, N. N. and Goldman, C. (2000) “Phylogenetic Study of the Spatial Distribution of Protein-Coding and Control Segments in DNA Chains.” Phys. Rev. Lett. 85:2396-2399. [254] Oiwa, N. N. and Glazier, J. A. (2002) “The Fractal Structure of the Mitochondrial Genomes.” Physica, A 311:221-230. [255] Oliver, J. L., Bernaola-Galvan, P., Guerrero-Garcia, J. and Roman-Roldan, R. (1993) “Entropic Profiles of DNA Sequences through Chaos-Game-Derived Images.” J. Theor. Biol. 160:457-470. [256] Ossadnik, S. M., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1994) “Correlation Approach to Identify Coding Regions in DNA Sequences.” Biophys. J. 67:64-70. [257] Paladin, G. and Vulpiani, A. (1987) “Anomalous Scaling Laws in Multifractal Objects.” Phys. Rep. 156:147-225. [258] Peitgen, H.-O. and Richter, P. H. (1986) The Beauty of Fractals : Images of Complex Dynamical Systems, New York: Springer-Verlag. [259] Peitgen, H-O, and Saupe, D. ed. (1988) The Science of Fractal Images, New York: Springer-Verlag. [260] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. and Stanley, H. E. (1992a) “Long-Range Correlations in Nucleotide Sequences.” Nature 356:168-170. [261] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S. Sciortino, F., Simons, M. and Stanley, H. E. (1992b) “Fractal Landscape Analysis of DNA Walks.” Physica, A 191:25-29. [262] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Simons, M. and Stanley, H. E. (1993) “Finite-Size Effects on Long-Range Correlations: Implications for Analyzing DNA Sequences.” Phys. Rev., E 47:3730-3733. [263] Peng, C.-K., Buldyrev. S. V., Hausdorff, J. M., Havlin, S., Mietus, J. E., Simons, M., Stanley, H. E. and Goldberger, A. L. (1994a) “Fractal Landscapes in Physiology & Medicine: Long-Range Correlations in DNA Sequences and Heart Rate Intervals.” In Fractals in Biology and Medicine Volume I, ed. Nonnenmacher, T. F., Losa, G. A. and Weibel, E. R., 55-65 Boston: Birkhauser Verlag. [264] Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., Goldberger, A. L. (1994b) “Mosaic Organization of DNA Nucleotides.” Phys. Rev., E 49:1685-1689. [265] Peters, E. E. (1991) Chaos and Order in the Capital Markets : A New View of Cycles, Prices, and Market Volatility, New York: Wiley. [266] Peters, E. E. (1994) Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, New York: J. Wiley & Sons. [267] Pietronero, L. ed. (1989) Fractals' Physical Origin and Properties, New York: Plenum Press. [268] Pietronero, L. and Tosatti, E. (1986) Fractals in Physics: Proceedings of the Sixth International Symposium on Fractals in Physics, New York: Elsevier Science. [269] Pinkerton, R. C. (1956) “Information Theory and Melody.” Scientific American 194(2): 77-86. [270] Prabhu, V. V. and Claverie, J.-M. (1992) “Correlations in Intronless DNA.” Nature 359:782. [271] Pressing, J. (1988) “Nonlinear Maps as Generators of Musical Design.” Computer Music Journal 12(2): 35-46. [272] Provata, A. and Almirantis, Y. (1997) “Scaling Properties of Coding and Non-Coding DNA Sequences.” Physica, A 247:482-496. [273] Provata, A. (1999) “Random Aggregation Models for the Formation and Evolution of Coding and Non-Coding DNA.” Physica, A 264:570-580. [274] Provata, A. and Almirantis, Y. (2000) “Fractal Cantor Patterns in the Sequence Structure of DNA.” Fractals 8: 15-27. [275] Provata, A. and Almirantis, Y. (2002) “Statistical Dynamics of Clustering in the Genome Structure.” J. Stat. Phys. 106:23-56. [276] Raghavan, S., Hariharan, R. and Brahmachari, S. K. (2000) “Polypurine. Polypyrimidine Sequences in Complete Bacterial Genomes: Preference for Polypurines in Protein-Coding Regions”, Gene, 242:275-283. [277] Rand, D. A. (1989) “The Singularity Spectrum for Cookie-Cutters.” Ergod. Theory Dyn. Syst. 9:527-541. [278] Reif, F. (1965) Fundamentals of Statistical and Thermal Physics, New York: McGraw-Hill. [279] Renyi, A. (1970) Probability Theory, Amsterdam: North-Holland. [280] Rhodes, J. (1997) “Music, Information, and the General Systems Problem Solver: A New Analytic Perspective.” International Journal of General Systems 26:145-163. [281] Rifaat, R. (1998) “Multifractal Analysis of DNA.” Master Thesis, University of Manitoba. [282] Roman-Roldan, R., Bernaola-Galvan, P. and Oliver, J. L. (1996) “Application of Information Theory to DNA Sequence Analysis: A Review.” Pattern Recognition 29:1187-1194. [283] Roman-Roldan, R., Bernaola-Galvan, P. and Oliver, J. L. (1998) “Sequence Compositional Complexity of DNA through an Entropic Segmentation Method.” Phys. Rev. Lett. 80:1344-1347. [284] Rosas, A., Nogueira, Jr., E. and Fontanari, J. F. (2002) “Multifractal Analysis of DNA Walks and Trails.” Phys. Rev., E 66:061906-1-061906-6. [285] Ruelle, D. (1978) Thermodynamic Formalism: the Mathematical Structures of Classical Equilibrium Statistical Mechanics, Reading: Addison-Wesley. [286] Salzberg, S. L., Delcher, A. L., Kasif. S. and White, O. (1998) “Microbial Gene Identification Using Interpolated Markov Models.” Nucleic Acids Res. 26:544-548. [287] Scafetta, N., Latora, V. and Grigolini, P. (2002) “Levy Statistics in Coding and Non-Coding Nucleotide Sequences.” Phys. Lett., Sect. A 299:565-570. [288] Scarpelli, A. T. (1979) “ Random Tones.” Personal Computing 3(7): 17-27. [289] Schertzer, D. and Lovejoy, S. (1991) Non-Linear Variability in Geophysics: Scaling and Fractals, Boston: Kluwer Academic Publishers. [290] Schmitt, A. O. and Herzel, H. (1997) “Estimating the Entropy of DNA Sequences.” J. Theor. Biol. 188:369-377. [291] Scholz, C. H. and Mandelbrot, B. B. ed. (1989) Fractals in Geophysics, Basel: Birkhauser Verlag. [292] Schroeder, M. R. (1986) “Auditory Paradox Based on Fractal Waveform.” J.Acoust. Soc. Am. 79(1): 186-189. [293] Schroeder, M. (1987) “Is There Such a Thing as Fractal Music?” Nature 325: 765-766. [294] Schroeder, M. (1989) “Self-Similarity and Fractals in Science and Art.” J. Audio Eng. Soc. 37:795-808. [295] Schroeder, M. (1990) Fractals, Chaos, Power laws: Minutes from an Infinite Paradise, New York: Freeman. [296] Schroeder, M. (1996) “Fractals in Music.” In Fractal Horizons, ed. Pickover, C. A., 207-223. New York: St. Martin's Press. [297] Shannon, C. E. (1948a) “A Mathematical Theory of Communication.” Bell Syst. tech. J. 27:379-423. [298] Shannon, C. E. (1948b) “A Mathematical Theory of Communication. Part III: Mathematical Preliminaries” Bell Syst. tech. J. 27:623-656. [299] Sharp, P. M. and Matassi, G. (1994) “Codon Usage and Genome Evolution.” Current Opinion in Genetics and Development 4:851-860. [300] Shi, Y. (1996) “Correlations of Pitches in Music.” Fractals 4: 547-553. .; zh-TW;; (2004) S. 213
Online Hochschulschrift

Titel:
音樂及DNA序列之多重碎形分析 ; Multifractal Analyses of Music and Nucleotide Sequences in DNA
Autor/in / Beteiligte Person: 蘇致遠 ; Su, Zhi-Yuan ; 伍次寅 ; 臺灣大學:機械工程學研究所
Link:
Quelle: 參考文獻 [1] 万柏坤 (1992),「 涨落之谜」,科学,44(3):45-46。 [2] 户欣、陈惠民、與李衍达合著 (1999),「细菌DNA序列中的长程相关性」,清华大学学报(自然科学版),39(7):98-102。 [3] 刘永信、郑美红、與马克健合著 (1994),「音乐的碎形结构」,内蒙古大学学报(自然科学版),25(4):408-413。 [4] 孙博文,碎形软件,< Academic Press. [77] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Stanley, H. E., Stanley, M. H. R. and Simons, M. (1993a) “Fractal Landscapes and Molecular Evolution: Modeling the Myosin Heavy Chain Gene Family.” Biophys. J. 65:2673-2679. [78] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1993b) “Generalized Levy-Walk Model for DNA Nucleotide Sequences.” Phys. Rev., E 47:4514-4523. [79] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M., Sciortino, F. and Stanley, H. E. (1993c) “Long-Range Power-Law Correlations in DNA.” Phys. Rev. Lett. 71:1776. [80] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K. and Stanley, H. E. (1994) “Fractals in Biology and Medicine: From DNA to Heartbeat.” In Fractals in Science, ed. Bunde, A. and Havlin, S., 49-87 New York: Springer-Verlag. [81] Buldyrev, S. V., Goldberger, A. L., Havlin, S., Mantegna, R. N., Matsa, M. E., Peng, C.-K., Simons, M. and Stanley, H. E. (1995) “Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis.” Phys. Rev., E 51:5084- 5091. [82] Buldyrev, S. V., Dokholyan, N. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Stanley, H. E. and Viswanathan, G. M. (1998) “Analysis of DNA Sequences Using Methods of Statistical Physics.” Physica, A 249:430-438. [83] Burge, C. and Karlin, S. (1997) “Prediction of Complete Gene Structures in Human Genomic DNA.” Journal of Molecular Biology 268:78-94. [84] Burset, M. and Guigo, R. (1996) “Evaluation of Gene Structure Prediction Programs.” Genomics 34:353-367. [85] Campbell, P. (1986) “The Music of Digital Computer.” Nature 324:523-528. [86] Campbell, P. (1987) “Replies: Is There Such a Thing as Fractal Music?” Nature 325:766. [87] Chhabra, A. and Jensen, R. V. (1989) “Direct Determination of the Singularity Spectrum.” Phys. Rev. Lett. 62:1327-1330. [88] Chhabra, A., Meneveau, C., Jensen, R. V. and Sreenivasan, K. R. (1989) “Direct Determination of the Singularity Spectrum and its Application to Fully Developed Turbulence.” Phys. Rev., A 40:5284-5294. [89] Chhabra, A. (1989) “The Thermodynamic Formalism of Multifractals and its Applications to Chaotic Dynamical Systems and Turbulence.” Ph.D. Thesis, Yale University. [90] Chatzidimitriou-Dreismann, C. A. and Larhammar, D. (1993) “Long-Range Correlations in DNA.” Nature 361:212-213. [91] Chatzidimitriou-Dreismann, C. A., Streffer, R. M. F. and Larhammar, D (1994a) “Variations in Base Pair Composition and Associated Long-Range Correlations in DNA Sequences-Computer Simulation Results.” Biochim. Biophys. Acta 1217:365-371. [92] Chatzidimitriou-Dreismann, C. A., Streffer, R. M. F. and Larhammar, D (1994b) “A Quantitative Test of Long-Range Correlations and Compositional Fluctuations in DNA Sequences.” Eur. J. Biochem. 224:181-187. [93] Christian, G. (1998) Fractal and Chaotic Properties of Earthquakes, New York: Springer. [94] Churchill, G. A. (1989) “Stochastic Models for Heterogeneous DNA Sequences.” Bull. Math. Biol. 51:79-94. [95] Claverie, J.-M. (1997) “Computational Methods for the Identification of Genes in Vertebrate Genomic Sequences.” Human Molecular Genetics 6:1735-1744. [96] Clay, O., Caccio, S., Zoubak, S., Mouchiroud, D., and Bernardi, G. (1996) “Human coding and noncoding DNA: compositional Correlations.” Molecular Phylogenetics and Evolition 5:2-12. [97] Cohen, J. E. (1962) “Information Theory and Music.” Behavioral Science 7:137-163. [98] Coleman, P. H. and Pietronero L. (1992) “The Fractal Structure of the Universe.” Phys. Rep. 213:311-389. [99] Coleman, P. H. (1996) “Fractals and the Universe.” In Fractal Geometry and Analysis: The Mandelbrot Festschrift, Curacao 1995., ed. Evertsz, C. J. G., Peitgen, H.-O. and Voss, R. F., 163-175 Singapore: World Scientific. [100] Collet, P., Lebowitz, J. L. and Porzio, A. (1987) “The Dimension Spectrum of Some Dynamical Systems.” J. Stat. Phys. 47:609-644. [101] Coons, E. and Krahenbuehl, D. (1958) “Information as a Measure of Structure in Music.” Journal of Music Theory 2:127-161. [102] Crownover, R. M. (1995) “Random Fractals.” In Introduction to Fractals and Chaos, 229-270 Boston: Jones and Bartlett. [103] de Arcangelis, L., Redner, S. and Coniglio, A. (1986) “Multiscaling Approach in Random Resistor and Random Superconducting Networks.” Phys. Rev., B 34: 4656-4673. [104] Dekking, M., Vehel, J. L., Lutton, E. and Tricot, C. ed. (1999) Fractals: Theory and Applications in Engineering, New York: Springer. [105] Deschavanne, P. J., Giron, A. Vilain, J., Fagot, G. and Fertil, B. (1999) “Genomic Signature: Characterization and Classification of Species Assessed by Chaos Game Representation of Sequences.” Mol. Biol. Evol. 16:1391-1399. [106] Dewey, T. G. (1997) Fractals in Molecular Biophysics, New York: Oxford University Press. [107] Dodge, C. and Bahn, C. R. (1986) “Musical Fractals.” Byte (June): 185-196. [108] Dodge, C. (1988) “Profile: A Musical Fractal.” Computer Music Journal 12(3): 10-14. [109] Dodon, G., Vandergheynst, P., Levoir, P., Cordier, C. and Marcourt, L. (2000) “Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences.” J. Theor. Biol. 206:323- 326. [110] Dong, S. and Searls, D. B. (1994) “Gene Structure Prediction by Linguistic Methods.” Genomics 23:540-551. [111] Duret, L., Mouchiroud, D. and Gautier, C. (1995) “Statistical Analysis of Vertebrate Sequences Reveals that Long Genes are Scarce in GC-Rich Isochores.” J. Mol. Evol., 40:308-317. [112] Dutta, C. and Das, J. (1992) “Mathematical Characterization of Chaos Game Representation: New Algorithms for Nucleotide Sequence Analysis.” J. Mol. Biol. 228:715-719. [113] Ebeling, W., Poschel, T. and Albrecht, K.-F. (1995) “Entropy, Transinformation and Word Distribution of Information-Carrying Sequences.” International Journal of Bifurcation and Chaos 5:51-61. [114] Edgar, G. A. (1990) Measure, Topology, and Fractal Geometry, New York: Springer- Verlag. [115] Fagarazzi, B. (1991) “A Fractal Approach to Musical Composition” In Fractals in the Fundamental and Applied Sciences, ed. Peitgen, H-O, Henriques, J. M., and Penedo, L. F., 135-146 New York: Elsevier Science. [116] Falconer, K. J. (1990) Fractal Geometry: Mathematical Foundations and Applications, New York: Wiley. [117] Falconer, K. J. (1997) Techniques in Fractal Geometry, New York: Wiley. [118] Farber, R., Lapedes, A. and Sirotkin, K. (1992) “Determination of Eukaryotic Protein Coding Regions Using Neural Networks and Information Theory.” J. Mol. Biol. 226:471-479. [119] Farmer, J. D. (1982a) “Information Dimension and Probabilistic Structure of Chaos.” Zeitschrift fuer Naturforschung, Sec. A: Physical Sciences. 37:1304- 1325. [120] Farmer, J. D. (1982b) “Chaotic Attractors of an Infinite-Dimensional Dynamical System.” Physica, D 4:366-393. [121] Farmer, J. D., Ott, E. and Yorke, J. A. (1983) “The Dimension of Chaotic Attractors.” Physica, D 7:158-180. [122] Feder, J. (1988) “Random Walks and Fractals.” In Fractals, 163-183 New York: Plenum Press. [123] Feigenbaum, M.J. (1987a) “Some Characterizations of Strange Sets.” J. Stat. Phys. 46:919-924. [124] Feigenbaum, M.J. (1987b) “Scaling Spectra and Return Times of Dynamical Systems.” J. Stat. Phys. 46:925-932. [125] Feng, YZ, Zhuang, YT and Pan, YH (2001) “Query Similar Music by Correlation Degree.” Lecture Notes in Computer Science 2195:885-890. [126] Fickett, J. W., Torney, D. C. and Wolf, D. R. (1992) “Base Compositional Structure of Genomes.” Genomics 13:1056-1064. [127] Fleischmann, M., Tildesley, D. J. and Ball, R. C. ed. (1989) Fractals in the Natural Sciences: A Discussion, Princeton: Princeton University Press. [128] Fourcade, B. and Tremblay, A.-M. S. (1987) “Anomalies in the Multifractal Analysis of Self-Similar Resistor Networks.” Phys. Rev., A 36: 2352-2358. [129] Frisch, U. and Parisi, G. (1985) “On the Singularity Structure of Fully Developed Turbulence.” In Turbulence and Predictability in Geophysical Fluid Dynamics, ed. Ghil, M., Benzi, R., and Parisi, G., 84-88 Amsterdam: North-Holland. [130] Frontali, C. and Pizzi, E. (1999) “Similarity in Oligonucleotide Usage in Introns and Intergenic Regions Contributes to Long-Range Correlation in the Caenorhabditis Elegans Genome.” Gene 232:87-95. [131] Gallager, R. G. (1968) Information Theory and Reliable Communication, New York; Wiley. [132] Garcia-Ruiz, J.-M., Louis, E., Meakin, P. and Sander, L. M. ed. (1993) Growth Patterns in Physical Sciences and Biology, New York: Plenum Press. [133] Gardner, M. (1978) “Mathematical Games: White and Brown Music, Fractal Curves and One-Over-F Fluctuations.” Scientific American 238(4): 16-32. [134] Gates, M. A. (1986) “A Simple Way to Look at DNA.” J. Theor. Biol. 119: 319-328. [135] Gelfand, M. S. and Roytberg, M. A. (1993) “Prediction of the Exon-Intron Structure by a Dynamic Programming.” BioSystems 30:173-182. [136] Gelfand, M. S., Podolsky, L. I., Astakhova, T. V. and Roytberg, M. A. (1996) “Recognition of Genes in Human DNA Sequences.” Journal of Computational Biology 3:223-234. [137] Glazier, J. A., Raghavachari, S., Berthelsen, C. L. and Skolnick, M. H. (1995) “Reconstructing Phylogeny from the Multifractal Spectrum of Mitochondrial DNA.” Phys. Rev., E 51:2665-2668. [138] Gleick, J. (1987) Chaos: Making a New Science, New York: Viking. [139] Gogins, M. (1991) “Iterated Functions Systems Music.” Computer Music Journal 15(1): 40-48. [140] Goldberger, A. L., Rigney, D. R. and West, B. J. (1990) “Chaos and Fractals in Human Physiology.” Scientific American 262(2): 42-49. [141] Grassberger, P. (1981) “On the Hausdorff Dimension of Fractal Attractors.” J. Stat. Phys. 26:173-179. [142] Grassberger, P. (1983a) “On the Fractal Dimension of the Henon Attractor.” Phys. Lett., Sect. A 97:224-226. [143] Grassberger, P. (1983b) “Generalized Dimensions of Strange Attractors.” Phys. Lett., Sect. A 97:227-230. [144] Grassberger, P. and Procaccia, I. (1983a) “Characterization of Strange Attractors.” Phys. Rev. Lett. 50:346-349. [145] Grassberger, P. and Procaccia, I. (1983b) “Measuring the Strangeness of Strange Attractors.” Physica, D 9:189-208. [146] Grassberger, P. and Procaccia, I. (1984) “Dimensions and Entropies of Strange Attractors from a Fluctuating Dynamics Approach.” Physica, D 13:34-54. [147] Grassberger, P. (1985) “Generalizations of the Hausdorff Dimension of Fractal Measures.” Phys. Lett., Sect. A 107:101-105. [148] Graur, D. and Li, W.-H. (2000) Fundamentals of Molecular Evolution, 2rd ed., Sunderland: Sinauer. [149] Grosse, I., Herzel, H., Buldyrev, S. V. and Stanley, H. E. (2000) “Species Independence of Mutual Information in Coding and Noncoding DNA.” Phys. Rev., E 61:5624-5629. [150] Grosse, I. (2000) “Applications of Statistical Physics and Information Theory to the Analysis of DNA Sequences.” Ph.D. Thesis, Boston University [151] Guharay, S., Hunt, B. R., Yorke, J. A. and White, O. R. (2000) “Correlations in DNA Sequences across the Three Domains of Life.” Physica, D 146:388-396. [152] Guigo, R., Knudsen, S., Drake, N. and Smith, T. (1992) “Prediction of Gene Structure.” Journal of Molecular Biology 226:141-157. [153] Gutierrez, J. M., Iglesias, A., Rodriguez, M. A., Burgos, J. D., Estevez, C. M. and Moreno, P. (1998) “Analyzing the Multifractal Structure of DNA Nucleotide Sequences.” In Chaos and Noise in Biology and Medicine: Proceedings of the International School of Biophysics, ed. Barbi, M.and Chillemi, S., 315-319. Singapore: World Scientific. [154] Gutierrez, J. M., Rodriguez, M. A. and Abramson, G. (2001) “Multifractal Analysis of DNA Sequences Using a Novel Chaos-Game Representation.” Physica, A 300:271-284. [155] Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. and Shraiman, B. I. (1986) “Fractal Measures and their Singularities: the Characterization of Strange Sets.” Phys. Rev., A 33:1141-1151. [156] Hao, B.-L. (2000) “Fractals from Genomes—Exact Solutions of a Biology-Inspired Problem.” Physica, A 282:225-246. [157] Hao, B.-L., Lee, H. C. and Zhang, S.-Y. (2000) “Fractals Related to Long DNA Sequences and Complete Genomes.” Chaos solitons fractals 11:825-836. [158] Hastings, H. M. and Sugihara, G. (1993) Fractals: A User's Guide for the Natural Sciences, New York: Oxford University Press. [159] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1995a) “Statistical and Linguistic Features of DNA Sequences.” Fractals 3:269-284. [160] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1995b) “Statistical Properties of DNA Sequences.” In Fractal Reviews in the Natural and Applied Sciences: Proceedings of the Third IFIP Working Conference on Fractals in the Natural and Applied Sciences., ed. Novak, M. M., 1-11 New York: Chapman & Hall. [161] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Ossadnik, S. M., Peng, C.-K., Simons, M. and Stanley, H. E. (1995c) “Fractals in Biology and Medicine.” Chaos solitons fractals 6:171-201. [162] Havlin, S., Buldyrev, S. V., Bunde, A., Goldberger, A. L., Ivanov, P. Ch., Peng, C.-K. and Stanley H. E. (1999) “Scaling in Nature: From DNA through Heartbeats to Weather” Physica, A 273:46-69. [163] Hayashi, K. and Munakata, N. (1984) “Basically Musical.” Nature 310:96. [164] Henderson, J., Salzberg, S. and Fasman, K. H. (1997) “Finding Genes in DNA with a Hidden Markov Model.” Journal of Computational Biology 4:127-141. [165] Hentschel, H. G. E. and Procaccia, I. (1983) “The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors.” Physica, D 8: 435-444. [166] Henderson-Sellers, B. and Cooper, D. (1993) “Has Classical Music a FractalNature? A Reanalysis.” Computers and the Humanities 27:277-284. [167] Herzel, H. and Große, I. (1995) “Measuring Correlations in Symbol Sequences.” Physica, A 216:518-542. [168] Herzel, H. and Große, I. (1997) “Correlations in DNA Sequences: The Role of Protein Coding Segments.” Phys. Rev., E 55:800-810. [169] Hilborn, R. C. (1994) Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, New York: Oxford University Press. [170] Hill, K. A., Schisler, N. J. and Singh, S. M. (1992) “Chaos Game Representation of Coding Regions of Human Globin Genes and Alcohol Dehydrogenase Genes of Phylogenetically Divergent Species.” J. Mol. Evol. 35:261-269. [171] Hiller, Jr., L. A. and Isaacson, L. M. (1959) Experimental Music, New York: McGraw-Hill Book Company. [172] Hiller, L.and Bean, C. (1966) “Information Theory Analyses of Four Sonata Expositions.” Journal of Music Theory 10:96-137. [173] Hiller, L.and Fuller, R. (1967) “Structure and Information in Webern’s Symphonie, Op. 21.” Journal of Music Theory 11:60-115. [174] Holste, D., Grosse, I. and Herzel, H. (2001) “Statistical Analysis of the DNA Sequence of Human Chromosome 22.” Phys. Rev., E 64:041917-1-041917-9. [175] Hsu, K. J. and Hsu, A. J. (1990) “Fractal Geometry of Music.” Proc. Natl. Acad. Sci. U. S. A. 87:938-941. [176] Hsu, K. J. and Hsu, A. J. (1991) “Self-Similarity of the Noise Called Music.” Proc. Natl. Acad. Sci. U. S. A. 88:3507-3509. [177] Hsu, K. J. (1993) “Fractal Geometry of Music: From Bird Songs to Bach” In Applications of Fractals and Chaos, ed. Crilly, A. J., Earnshaw, R. A., and Jones, H., 21-39 New York: Springer-Verlag. [178] Hutchinson, G. B. and Hayden, M. R. (1992) “The Prediction of Exons through an Analysis of Spliceable Open Reading Frames.” Nucleic Acids Res. 20:3453-3462. [179] Iannaccone, P. M. and Khokha, M. ed. (1996) Fractal Geometry in Biological Systems: An Analytical Approach, Boca Raton: CRC Press. [180] Isohata, Y. and Hayashi, M. (2003) “Power Spectrum and Mutual Information Analyses of DNA Base (Nucleotide) Sequences.” J. Phys. Soc. Jpn. 72: 735- 742. [181] Israeloff, N. E., Kagalenko, M. and Chan, K. (1996) “Can Zipf Distinguish Language from Noise in Noncoding DNA?” Phys. Rev. Lett. 76:1976. [182] Jeffrey, H. J. (1990) “Chaos Game Representation of Gene Structure.” Nucleic Acids Res. 18:2163-2170. [183] Jeffrey, H. J. (1992) “Chaos Game Visualization of Sequences.” Comput. Graph. 16:25-33. [184] Jensen, M. H., Kadanoff, L. P. and Procaccia, I. (1987) “Scaling Structure and Thermodynamics of Strange Sets.” Phys. Rev., A 36:1409-1420. [185] Karlin, S. and Brendel, V. (1993) “Patchiness and Correlations in DNA Sequences.” Science 259:677-680. [186] Katzen, D. and Procaccia, I. (1987) “Phase Transitions in the Thermodynamic Formalism of Multifractals.” Phys. Rev. Lett. 58:1169-1172. [187] Klimontovich, Y. L. and Boon J. –P. (1987) “Natural Flicker Noise ( Noise) in Music.” Europhys. Lett. 3:395-399. [188] Knopoff, L. and Hutchinson, W. (1981) “Information Theory for Musical Continua.” Journal of Music Theory 25:17-44. [189] Knopoff, L. and Hutchinson, W. (1983) “Entropy as a Measure of Style: The Influence of Sample Length.” Journal of Music Theory 27:75-97. [190] Kohmoto, M. (1988) “Entropy Function for Multifractals.” Phys. Rev., A 37: 1345-1350. [191] Korolev, S. V., Solovyev, V. V. and Tumanyan, V. G. (1992) “New Method in the Overall Search for the Functional Regions of DNA Using the Fractal Representation of Nucleotide Texts.” Biophysics 37: 733-742. [192] Kotlar, D. and Lavner, Y. (2003) “Gene Prediction by Spectal Rotation Measure: A New Method for Identifying Protein-Coding Regions.” Genome Research 13: 1930-1937. [193] Krahenbuehl, D. and Coons, E. (1959) “Information as a Measure of Experience in Music.” Journal of Aesthetics and Art Criticism 17: 510-522. [194] Larhammar, D. and Chatzidimitriou-Dreismann, C. A. (1993) “Biological Origins of Long-Range Correlations and Compositional Variations in DNA.” Nucleic Acids Res. 21:5167-5170. [195] Lee, J. and Stanley, H. E. (1988) “Phase Transition in the Multifractal Spectrum of Diffusion-Limited Aggregation.” Phys. Rev. Lett. 61:2945-2948. [196] Lewin, R. (1991) “The fractal structure of music.” New Scientist 130(May 4):19. [197] Li, W. (1991a) “Absence of Spectra in Dow Jones Daily Average.” International Journal of Bifurcation and Chaos 1:583-597. [198] Li, W. (1991b) “Expansion-Modification Systems: A Model for Spatial Spectra.” Phys. Rev., A 43:5240-5260. [199] Li, W. (1992) “Generating Nontrivial Long-Range Correlations and Spectra by Replication and Mutation.” International Journal of Bifurcation and Chaos 2:137-154. [200] Li, W. and Kaneko, K. (1992) “Long-Range Correlation and Partial Spectrum in a Noncoding DNA Sequence.” Europhys. Lett. 17:655-660. [201] Li, W., Marr, T. G. and Kaneko, K. (1994) “Understanding Long-Range Correlations in DNA Sequences.” Physica, D 75:392-416. [202] Li, W. (1997) “The Study of Correlation Structures of DNA Sequences: A Critical Review.” Comput. Chem. 21:257-271. [203] Losa G. A., Nonnenmacher, T., Merlini, D. and Weibel, E. R. ed. (1998) Fractals in Biology and Medicine Volume II, Boston: Birkhuser Verlag. [204] Lovejoy, S. (1982) “Area-Perimeter Relation for Rain and Cloud Areas.” Science 216:185-187. [205] Lu, X., Sun, Z., Chen, H. and Li, Y. (1998) “Characterizing Self-Similarity in Bacteria DNA Sequences.” Phys. Rev., E 58:3578-3584. [206] Luo, L. and Tsai, L. (1988) “Fractal Dimension of Nucleic Acid Sequences and its Relation.” Chinese Phys. Lett. 5(9): 421-424. [207] Luo, L. and Lee, W. (1998) “Statistical Correlation of Nucleotides in a DNA Sequence.” Phys. Rev., E 58:861-871. [208] Madden, C. (1999) Fractals in Music: Introductory Mathematics for Musical Analysis, Salt Lake City: High Art Press. [209] Maddox, J. (1992) “Long-Range Correlations within DNA.” Nature 358:103. [210] Madison, G. (2000) “Properties of Expressive Variability Patterns in Music Performances.” J. New Mus. Res. 29:335-356. [211] Manaris, B., Vaughan, D., Wagner, C. Romero, J. and Davis, R. B. (2003) “Evolutionary Music and the Zipf-Mandelbrot Law: Devloping Fitness Functions for Pleasant Music.” Lecture Notes in Computer Science 2611:522-534. [212] Mandelbrot, B. B. (1967) “How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.” Science 156:636-638. [213] Mandelbrot, B. B. and Van Ness J. W. (1968) “Fractional Brownian Motions, Fractional Noises and Applications.” SIAM Review 10(4): 422-437. [214] Mandelbrot, B. B. and Wallis J. R. (1969) “Some Long-Run Properties of Geophysical Records.” Water Resour. Res. 5:321-340. [215] Mandelbrot, B. B. (1974) “Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier.” J. Fluid Mech. 62:331-358. [216] Mandelbrot, B. B. (1977) Fractals: Form, Chance, and Dimension, San Francisco: Freeman. [217] Mandelbrot, B. B. (1983) The Fractal Geometry of Nature, New York: Freeman. [218] Mandelbrot, B. B. (1988) “An Introduction to Multifractal Distribution Functions.” In Random Fluctuations and Pattern Growth: Experiments and Models, ed. Stanley, H. E. and Ostrowsky, N., 279-291. Boston: Kluwer Academic Publishers. [219] Mandelbrot, B. B. (1989a) “A Class of Multinomial Multifractal Measures with Negative (Latent) Values for the "Dimension"” In Fractals' Physical Origin and Properties, ed. Pietronero, L., 3-29. New York: Plenum Press. [220] Mandelbrot, B. B. (1989b) “Multifractal Measures, Especially for the Geophysicist.” In Fractals in Geophysics., ed. Scholz, C. H. and Mandelbrot, B. B., 5-42. Basel: Birkhauser Verlag. [221] Mandelbrot, B. B. (1989c) “The Principles of Multifractal Measures.” In The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, ed. Avnir, D., 45-51. Chichester: Wiley. [222] Mandelbrot, B. B. (1990) “Negative Fractal Dimensions and Multifractals.” Physica, A 163:306-315. [223] Mandelbrot, B. B. (1991) “Random Multifractals: Negative Dimensions and the Resulting Limitations of the Thermodynamic Formalism.” Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci. 434:79-88. [224] Mandelbrot, B. B. and Evertsz, C. J. G. (1991) “Multifractality of the Harmonic Measure on Fractal Aggregates, and Extended Self-Similarity.” Physica, A 177:386-393. [225] Mandelbrot, B. B. (1995) “Negative Dimensions and Hölders, Multifractals and their Hölder Spectra, and the Role of Lateral Preasymptotics in Science.” In The Journal of Fourier Analysis and Applications, Kahane Special issue, 1995., ed. Benedetto, J. J., 409-432. Boca Raton: CRC Press. [226] Mandelbrot, B. B. (1997) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, New York: Springer. [227] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1994) “Linguistic Features of Noncoding DNA Sequences.” Phys. Rev. Lett. 73:3169-3172. [228] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1995) “Systematic Analysis of Coding and Noncoding DNA Sequences Using Methods of Statistical Linguistics.” Phys. Rev., E 52: 2939-2950. [229] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H. E. (1996) “Mantegna et al. Reply.” Phys. Rev. Lett. 76: 1979-1981. [230] Manzara, L. C., Witten, I. H. and James, M. (1992) “On the Entropy of Music: An Experiment with Bach Chorale Melodies.” Leonardo Music Journal 2: 81- 88. [231] Mathe, C., Sagot, M.-F., Schiex, T. and Rouze. P. (2002) “Current Methods of Gene Prediction, Their Strengths and Weaknesses.” Nucleic Acids Res. 30:4103-4117. [232] McCauley, J. L. (1990) “Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence.” Phys. Rep. 189:225-266. [233] Meakin, P. (1988) “The Growth of Fractal Aggregates and their Fractal Measures. ” Phase Transitions and Critical Phenomena 12:336-489. [234] Meakin, P. (1998) Fractals, Scaling, and Growth Far from Equilibrium, New York: Cambridge University Press. [235] Meneveau, C. (1989) “The Multifractal Nature of Turbulence.” Ph.D. Thesis, Yale University. [236] Meneveau, C. and Sreenivasan, K. R. (1989) “Measurement of from Scaling of Histograms, and Applications to Dynamical Systems and Fully Developed Turbulence.” Phys. Lett., Sect. A 137:103-112. [237] Meneveau, C. and Sreenivasan, K. R. (1991) “The Multifractal Nature of Turbulent Energy Dissipation.” J. Fluid Mech. 224:429-484. [238] Meyer, L. B. (1957) “Meaning in Music and Information Theory.” Journal of Aesthetics and Art Criticism 15:412-424. [239] Meyer, L. B. (1961) “On Rehearing Music.” Journal of the American Musicological Society 14:257-267. [240] Milanesi, L., Kolchanovm N. A., Rogozin, I. B., Ischenko, I. V., Kel, A. E., Orlov, Y. L., Ponomarenko, M. P. and Vezzoni, P. (1993) “GenViewer: A Computing Tool for Protein-Coding Regions Prediction in Nucleotide Sequences.” In The Second International Conference on Bioinformatics, Supercomputing and the Human Genome, ed. Lim, H. A. et al., 573-587 Singapore:World Scientific. [241] Mohanty, A. K. and Narayana Rao, A. V. S. S. (2000) “Factorial Moments Analyses Show a Characteristic Length Scale in DNA Sequences.” Phys. Rev. Lett. 84:1832-1835. [242] Mouchiroud, D., Donofrio, G., Aissani, B. Macaya, G., Gautier, C. and Bernardi, G. (1991) “The Distribution of Genes in the Human Genome.” Gene 100:181-187. [243] Munakata, N. and Hayashi, K. (1995) “Gene Music: Tonal Assignments of Bases and Amino Acids.” In Visualizing Biological Information, ed. Pickover, C. A., 72-83 Singapore: World Scientific. [244] Munson, P. J., Taylor, R. C. and Michaels, G. S. (1992) “DNA Correlations.” Nature 360:636. [245] Murray, K. B., Gorse D. and Thornton, J. M. (2002) “Wavelet Transforms for the Characterization and Detection of Repeating Motifs.” J. Mol. Biol. 316: 341-363. [246] Muzy, J. F., Bacry, E. and Arneodo, A. (1993) “Multifractal Formalism for Fractal Signals: The Structure-Function Approach Versus the Wavelet-Transform Modulus-Maxima Method.” Phys. Rev., E 47:875-884. [247] Muzy, J. F., Bacry, E. and Arneodo, A. (1994) “The Multifractal Formalsim Revisited with Wavelets.” International Journal of Bifurcation and Chaos 4: 245-302. [248] Nee, S. (1992) “Uncorrelated DNA Walks.” Nature 357:450. [249] Nonnenmacher, T. F., Losa, G. A. and Weibel, E. R. ed. (1994) Fractals in Biology and Medicine Volume I, Boston: Birkhauser Verlag. [250] Ohno, S. and Ohno, M. (1986) “The All Pervasive Principle of Repetitious Recurrence Governs Not Only Coding Sequence Construction But Also Human Endeavor in Musical Composition.” Immunogenetics 24:71-78. [251] Ohno, S. (1993) “Patterns in Genome Evolution.” Current Opinion in Genetics and Development 3:911-914. [252] Ohno, S. (1988) “On Periodicities Governing the Construction of Genes and Proteins.” Animal Genetics 19:305-316. [253] Oiwa, N. N. and Goldman, C. (2000) “Phylogenetic Study of the Spatial Distribution of Protein-Coding and Control Segments in DNA Chains.” Phys. Rev. Lett. 85:2396-2399. [254] Oiwa, N. N. and Glazier, J. A. (2002) “The Fractal Structure of the Mitochondrial Genomes.” Physica, A 311:221-230. [255] Oliver, J. L., Bernaola-Galvan, P., Guerrero-Garcia, J. and Roman-Roldan, R. (1993) “Entropic Profiles of DNA Sequences through Chaos-Game-Derived Images.” J. Theor. Biol. 160:457-470. [256] Ossadnik, S. M., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Mantegna, R. N., Peng, C.-K., Simons, M. and Stanley, H. E. (1994) “Correlation Approach to Identify Coding Regions in DNA Sequences.” Biophys. J. 67:64-70. [257] Paladin, G. and Vulpiani, A. (1987) “Anomalous Scaling Laws in Multifractal Objects.” Phys. Rep. 156:147-225. [258] Peitgen, H.-O. and Richter, P. H. (1986) The Beauty of Fractals : Images of Complex Dynamical Systems, New York: Springer-Verlag. [259] Peitgen, H-O, and Saupe, D. ed. (1988) The Science of Fractal Images, New York: Springer-Verlag. [260] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. and Stanley, H. E. (1992a) “Long-Range Correlations in Nucleotide Sequences.” Nature 356:168-170. [261] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S. Sciortino, F., Simons, M. and Stanley, H. E. (1992b) “Fractal Landscape Analysis of DNA Walks.” Physica, A 191:25-29. [262] Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Simons, M. and Stanley, H. E. (1993) “Finite-Size Effects on Long-Range Correlations: Implications for Analyzing DNA Sequences.” Phys. Rev., E 47:3730-3733. [263] Peng, C.-K., Buldyrev. S. V., Hausdorff, J. M., Havlin, S., Mietus, J. E., Simons, M., Stanley, H. E. and Goldberger, A. L. (1994a) “Fractal Landscapes in Physiology & Medicine: Long-Range Correlations in DNA Sequences and Heart Rate Intervals.” In Fractals in Biology and Medicine Volume I, ed. Nonnenmacher, T. F., Losa, G. A. and Weibel, E. R., 55-65 Boston: Birkhauser Verlag. [264] Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., Goldberger, A. L. (1994b) “Mosaic Organization of DNA Nucleotides.” Phys. Rev., E 49:1685-1689. [265] Peters, E. E. (1991) Chaos and Order in the Capital Markets : A New View of Cycles, Prices, and Market Volatility, New York: Wiley. [266] Peters, E. E. (1994) Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, New York: J. Wiley & Sons. [267] Pietronero, L. ed. (1989) Fractals' Physical Origin and Properties, New York: Plenum Press. [268] Pietronero, L. and Tosatti, E. (1986) Fractals in Physics: Proceedings of the Sixth International Symposium on Fractals in Physics, New York: Elsevier Science. [269] Pinkerton, R. C. (1956) “Information Theory and Melody.” Scientific American 194(2): 77-86. [270] Prabhu, V. V. and Claverie, J.-M. (1992) “Correlations in Intronless DNA.” Nature 359:782. [271] Pressing, J. (1988) “Nonlinear Maps as Generators of Musical Design.” Computer Music Journal 12(2): 35-46. [272] Provata, A. and Almirantis, Y. (1997) “Scaling Properties of Coding and Non-Coding DNA Sequences.” Physica, A 247:482-496. [273] Provata, A. (1999) “Random Aggregation Models for the Formation and Evolution of Coding and Non-Coding DNA.” Physica, A 264:570-580. [274] Provata, A. and Almirantis, Y. (2000) “Fractal Cantor Patterns in the Sequence Structure of DNA.” Fractals 8: 15-27. [275] Provata, A. and Almirantis, Y. (2002) “Statistical Dynamics of Clustering in the Genome Structure.” J. Stat. Phys. 106:23-56. [276] Raghavan, S., Hariharan, R. and Brahmachari, S. K. (2000) “Polypurine. Polypyrimidine Sequences in Complete Bacterial Genomes: Preference for Polypurines in Protein-Coding Regions”, Gene, 242:275-283. [277] Rand, D. A. (1989) “The Singularity Spectrum for Cookie-Cutters.” Ergod. Theory Dyn. Syst. 9:527-541. [278] Reif, F. (1965) Fundamentals of Statistical and Thermal Physics, New York: McGraw-Hill. [279] Renyi, A. (1970) Probability Theory, Amsterdam: North-Holland. [280] Rhodes, J. (1997) “Music, Information, and the General Systems Problem Solver: A New Analytic Perspective.” International Journal of General Systems 26:145-163. [281] Rifaat, R. (1998) “Multifractal Analysis of DNA.” Master Thesis, University of Manitoba. [282] Roman-Roldan, R., Bernaola-Galvan, P. and Oliver, J. L. (1996) “Application of Information Theory to DNA Sequence Analysis: A Review.” Pattern Recognition 29:1187-1194. [283] Roman-Roldan, R., Bernaola-Galvan, P. and Oliver, J. L. (1998) “Sequence Compositional Complexity of DNA through an Entropic Segmentation Method.” Phys. Rev. Lett. 80:1344-1347. [284] Rosas, A., Nogueira, Jr., E. and Fontanari, J. F. (2002) “Multifractal Analysis of DNA Walks and Trails.” Phys. Rev., E 66:061906-1-061906-6. [285] Ruelle, D. (1978) Thermodynamic Formalism: the Mathematical Structures of Classical Equilibrium Statistical Mechanics, Reading: Addison-Wesley. [286] Salzberg, S. L., Delcher, A. L., Kasif. S. and White, O. (1998) “Microbial Gene Identification Using Interpolated Markov Models.” Nucleic Acids Res. 26:544-548. [287] Scafetta, N., Latora, V. and Grigolini, P. (2002) “Levy Statistics in Coding and Non-Coding Nucleotide Sequences.” Phys. Lett., Sect. A 299:565-570. [288] Scarpelli, A. T. (1979) “ Random Tones.” Personal Computing 3(7): 17-27. [289] Schertzer, D. and Lovejoy, S. (1991) Non-Linear Variability in Geophysics: Scaling and Fractals, Boston: Kluwer Academic Publishers. [290] Schmitt, A. O. and Herzel, H. (1997) “Estimating the Entropy of DNA Sequences.” J. Theor. Biol. 188:369-377. [291] Scholz, C. H. and Mandelbrot, B. B. ed. (1989) Fractals in Geophysics, Basel: Birkhauser Verlag. [292] Schroeder, M. R. (1986) “Auditory Paradox Based on Fractal Waveform.” J.Acoust. Soc. Am. 79(1): 186-189. [293] Schroeder, M. (1987) “Is There Such a Thing as Fractal Music?” Nature 325: 765-766. [294] Schroeder, M. (1989) “Self-Similarity and Fractals in Science and Art.” J. Audio Eng. Soc. 37:795-808. [295] Schroeder, M. (1990) Fractals, Chaos, Power laws: Minutes from an Infinite Paradise, New York: Freeman. [296] Schroeder, M. (1996) “Fractals in Music.” In Fractal Horizons, ed. Pickover, C. A., 207-223. New York: St. Martin's Press. [297] Shannon, C. E. (1948a) “A Mathematical Theory of Communication.” Bell Syst. tech. J. 27:379-423. [298] Shannon, C. E. (1948b) “A Mathematical Theory of Communication. Part III: Mathematical Preliminaries” Bell Syst. tech. J. 27:623-656. [299] Sharp, P. M. and Matassi, G. (1994) “Codon Usage and Genome Evolution.” Current Opinion in Genetics and Development 4:851-860. [300] Shi, Y. (1996) “Correlations of Pitches in Music.” Fractals 4: 547-553. .; zh-TW;; (2004) S. 213
Veröffentlichung: 2004
Medientyp: Hochschulschrift
Schlagwort:
  • DNA序列
  • 蛋白質編碼區域預測
  • 外顯子
  • 多重碎形頻譜
  • 相關性分析
  • 頻譜分析
  • 多重碎形
  • lder指數
  • 碎形
  • 局部碎形分布尺度比例指數
  • 長程關聯性
  • 互信息
  • 音樂
  • Hurst指數
  • 碎形布朗運動
  • Hurst Exponent
  • Mutual Information
  • DNA
  • Nucleotide Sequence
  • Local Scaling Exponent
  • FBM
  • Exon
  • Correlation Analysis
  • Protein Coding Region Prediction
  • Music
  • Spectral Analysis
  • Multifractal
  • Long-Range Correlation
  • lder Exponent
Sonstiges:
  • Nachgewiesen in: BASE
  • Sprachen: Chinese, English
  • Collection: National Taiwan University Institutional Repository (NTUR)
  • Document Type: thesis
  • File Description: 8568250 bytes; application/pdf
  • Language: Chinese ; English

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -