Zum Hauptinhalt springen

Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico

Giraldo Palacios, Alvaro José ; Neuta Arciniegas, Paola Andrea ; et al.
In: [1] Y. Kuroda et al., “Unique multipotent cells in adult human mesenchymal cell populations,” Proceedings of the National Academy of Sciences, vol. 107, no. 19, pp. 8639–8643, Mayo, 2010. doi:10.1073/pnas.0911647107.; [2] S. Heneidi et al., “Awakened by cellular tress: Isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue,” PLOS ONE, vol. 8, no. 6, p. e64752, Jun., 2013. doi:10.1371/journal.pone.0064752; [3] Z. Yang et al., “Isolation and characterization of ssea3+ stem cells derived from goat skin fibroblasts,” Cellular Reprogramming, vol. 15, no. 3, pp. 195–205, Jun., 2013. doi:10.1089/cell.2012.0080.; [4] M. Iseki et al., “Human muse cells, nontumorigenic phiripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis,” Cell Transplantation, vol. 26, no. 5, pp. 821– 840, Mayo, 2017. doi:10.3727/096368916X693662.; [5] K. Kinoshita et al., “Therapeutic potential of adipose-derived ssea-3-positive muse cells for treating diabetic skin ulcers,” STEM CELLS Translational Medicine, vol. 4, no. 2, pp. 146–155, Ene., 2015. doi:10.5966/sctm.2014-0181.; [6] H. Uchida et al., “Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation,” STEM CELLS, vol. 34, no. 1, pp. 160–173, Ene., 2015. doi:10.1002/stem.2206.; [7] T. Yamauchi, K. Yamasaki, K. Tsuchiyama, S. Koike y S. Aiba, “The potential of muse cells for regenerative medicine of skin: Procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes,” Journal of Investigative Dermatology, vol. 137, no. 12, pp. 2639–2642, Dic., 2017. doi:10.1016/j.jid.2017.06.021.; [8] A. M. Fouad et al., “In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 2, pp. 433–440, Dic., 2018. doi:10.1016/j.jgeb.2018.09.003.; [9] E. Toyoda et al., “Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue,” Regenerative Therapy, vol. 10, pp. 17–26, Jun., 2019. doi:10.1016/j.reth.2018.10.005.; [10] M. Dezawa, “Clinical Trials of Muse Cells” en Muse Cells. Japón: Springer Japan, 2018, cap. 17, p. 308.; [11] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima y M. Dezawa, “Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells,” Nature Protocols, vol. 8, no. 7, pp. 1391–1415, Jun., 2013. doi:10.1038/nprot.2013.076.; [12] K. Tatsumi, Y. Kushida, S. Wakao, Y. Kuroda y M. Dezawa, “Protocols for Isolation and Evaluation of Muse Cells,” en Advances in Experimental Medicine and Biology. Japón: Springer Japan, 2018, pp. 69–101. doi:10.1007/978-4- 431-56847-6_4.; [13] S. C. Fisch et al., “Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective,” Stem Cell Research & Therapy, vol. 8, no. 1, Oct., 2017. doi:10.1186/s13287-017-0674-3.; [14] S. A. Przyborski, “Differentiation of human embryonic stem cells after transplantation in immune-deficient mice,” STEM CELLS, vol. 23, no. 9, pp. 1242–1250, Oct., 2005. doi:10.1634/stemcells.2005-0014.; [15] A. A. Simerman, D. A. Dumesic y G. D. Chazenbalk, “Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy,” Clinical and Translational Medicine, vol. 3, no. 1, pp. 3-12, Mayo, 2014. doi:10.1186/2001-1326-3-12.; [16] M. L. Gimeno et al., “Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1,” STEM CELLS Translational Medicine, vol. 6, no. 1, pp. 161–173, Ago., 2016. doi:10.5966/sctm.2016-0014.; [17] A. A. Simerman, J. D. Phan, D. A. Dumesic y G. D. Chazenbalk, “Muse cells: Nontumorigenic pluripotent stem cells present in adult tissues—A paradigm shift in tissue regeneration and evolution,” Stem Cells International, vol. 2016, pp. 1–8, Dic., 2016. doi:10.1155/2016/1463258.; [18] R. Lovell-Badge, “The future for stem cell research,” Nature, vol. 414, no. 6859, pp. 88–91, Nov., 2001. doi:10.1038/35102150.; [19] M. Dezawa, “Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration, “ Cell Transplant, vol. 25, no. 5, pp. 849-861, Feb., 2016. doi:10.3727/096368916X690881.; [20] I. L. Weissman y J. A. Shizuru, “The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases,” Blood, vol. 112, no. 9, pp. 3543–3553, Oct., 2008. doi:10.1182/blood-2008-08-078220.; [21] Y. Kuroda, M. Kitada, S. Wakao y M. Dezawa, “Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells?,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 5, pp. 369– 378, Jul., 2011. doi:10.1007/s00005-011-0139-9.; [22] Cell Culture Basics Handbook, Thermo Fischer Scientific Inc., Waltham, MA, USA, 2016, p. 19.; [23] L. A. Flanagan, B. Ziaeian, T. Palmer y P. H. Schwartz, “Immunocytochemical Analysis of Stem Cells,” en Human Stem Cell Manual. USA: Elsevier, 2007, cap. 9, pp. 108–126. doi:10.1016/B978-012370465-8/50014-4.; [24] S. Marchenko y L. Flanagan, “Immunocytochemistry: Human Neural Stem Cells,” Journal of Visualized Experiments, no. 7, Ago., 2007. doi:10.3791/267.; [25] P. A. Campbell, “Alkaline Phosphatase Staining,” Bio-Protocol, vol. 4, no. 5, Mar., 2014. doi:10.21769/BioProtoc.1060.; [26] T. Tian, R. Zhang, Y. Yang, Q. Liu, D. Li y X. Pan, “Muse cells derived from dermal tissues can differentiate into melanocytes,” Cellular Reprogramming, vol. 19, no. 2, pp. 116-122, Abr., 2017. doi:10.1089/cell.2016.0032.; [27] H. Yabuki, S. Wakao, Y. Kushida, M. Dezawa y Y.Okada, “Human multilineagedifferentiating stress-enduring cells exert pleiotropic effects to ameliorate acute lung ischemia-reperfusion injury in a rat model,” Cell Transplant, vol. 27, no. 6, pp. 979-993, Abr., 2018. doi:10.1177/0963689718761657.; [28] N. Uchida et al., “Beneficial effects of systemically administered human muse cells in adriamycin nephropathy,” Journal of the American Society of Nephrology, vol. 28, no. 10, pp. 2946-2960, Jul., 2017. doi:10.1681/asn.2016070775.; [29] J. Cao, Z. Yang, R. Xiao, y B. Pan, “Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells),” Regenerative Therapy, vol. 15, pp. 92–96, Dic., 2020. doi:10.1016/j.reth.2020.04.011.; [30] F. Motoe, T. Yamauchi, K. Yamasaki y S. Aiba, “LB1606 Retainability of pluripotency and viability of multilineage-differentiating stress enduring (Muse) cells after repeated cryopreservation,” Journal of Investigative Dermatology, vol. 138, no. 9, p. B23, Sep., 2018. doi:10.1016/j.jid.2018.06.147.; [31] T. Yamauchi, K. Yamasaki, K. Tsutiyama, S. Koike y S. Aiba, “904 Adipose multilineage-differentiating stress enduring (Muse) cell maintain pluripotency regardless of donors’ age,” Journal of Investigative Dermatology, vol. 137, no. 5, p. S156, Mayo, 2017. doi:10.1016/j.jid.2017.02.931.; [32] P. A. Neuta Arciniegas, “Implementación de un modelo pre-clínico con aloinjertos de células mesenquimales diferenciadas para prevenir la insuficiencia cardiaca crónica secundaria a un infarto agudo de miocardio,” Tesis Ph.D., Fac. Salud, Dpto. Ciencias Fisiológicas, Prog. Doctorado en Ciencias Biomédicas, Univ. del Valle, Santiago de Cali, Valle, 2013.; Universidad Autónoma de Occidente (UAO); Repositorio Educativo Digital; (2021) S. 8639
Hochschulschrift

Titel:
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico
Autor/in / Beteiligte Person: Giraldo Palacios, Alvaro José ; Neuta Arciniegas, Paola Andrea ; Universidad Autónoma de Occidente (UAO)
Link:
Quelle: [1] Y. Kuroda et al., “Unique multipotent cells in adult human mesenchymal cell populations,” Proceedings of the National Academy of Sciences, vol. 107, no. 19, pp. 8639–8643, Mayo, 2010. doi:10.1073/pnas.0911647107.; [2] S. Heneidi et al., “Awakened by cellular tress: Isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue,” PLOS ONE, vol. 8, no. 6, p. e64752, Jun., 2013. doi:10.1371/journal.pone.0064752; [3] Z. Yang et al., “Isolation and characterization of ssea3+ stem cells derived from goat skin fibroblasts,” Cellular Reprogramming, vol. 15, no. 3, pp. 195–205, Jun., 2013. doi:10.1089/cell.2012.0080.; [4] M. Iseki et al., “Human muse cells, nontumorigenic phiripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis,” Cell Transplantation, vol. 26, no. 5, pp. 821– 840, Mayo, 2017. doi:10.3727/096368916X693662.; [5] K. Kinoshita et al., “Therapeutic potential of adipose-derived ssea-3-positive muse cells for treating diabetic skin ulcers,” STEM CELLS Translational Medicine, vol. 4, no. 2, pp. 146–155, Ene., 2015. doi:10.5966/sctm.2014-0181.; [6] H. Uchida et al., “Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation,” STEM CELLS, vol. 34, no. 1, pp. 160–173, Ene., 2015. doi:10.1002/stem.2206.; [7] T. Yamauchi, K. Yamasaki, K. Tsuchiyama, S. Koike y S. Aiba, “The potential of muse cells for regenerative medicine of skin: Procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes,” Journal of Investigative Dermatology, vol. 137, no. 12, pp. 2639–2642, Dic., 2017. doi:10.1016/j.jid.2017.06.021.; [8] A. M. Fouad et al., “In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 2, pp. 433–440, Dic., 2018. doi:10.1016/j.jgeb.2018.09.003.; [9] E. Toyoda et al., “Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue,” Regenerative Therapy, vol. 10, pp. 17–26, Jun., 2019. doi:10.1016/j.reth.2018.10.005.; [10] M. Dezawa, “Clinical Trials of Muse Cells” en Muse Cells. Japón: Springer Japan, 2018, cap. 17, p. 308.; [11] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima y M. Dezawa, “Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells,” Nature Protocols, vol. 8, no. 7, pp. 1391–1415, Jun., 2013. doi:10.1038/nprot.2013.076.; [12] K. Tatsumi, Y. Kushida, S. Wakao, Y. Kuroda y M. Dezawa, “Protocols for Isolation and Evaluation of Muse Cells,” en Advances in Experimental Medicine and Biology. Japón: Springer Japan, 2018, pp. 69–101. doi:10.1007/978-4- 431-56847-6_4.; [13] S. C. Fisch et al., “Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective,” Stem Cell Research & Therapy, vol. 8, no. 1, Oct., 2017. doi:10.1186/s13287-017-0674-3.; [14] S. A. Przyborski, “Differentiation of human embryonic stem cells after transplantation in immune-deficient mice,” STEM CELLS, vol. 23, no. 9, pp. 1242–1250, Oct., 2005. doi:10.1634/stemcells.2005-0014.; [15] A. A. Simerman, D. A. Dumesic y G. D. Chazenbalk, “Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy,” Clinical and Translational Medicine, vol. 3, no. 1, pp. 3-12, Mayo, 2014. doi:10.1186/2001-1326-3-12.; [16] M. L. Gimeno et al., “Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1,” STEM CELLS Translational Medicine, vol. 6, no. 1, pp. 161–173, Ago., 2016. doi:10.5966/sctm.2016-0014.; [17] A. A. Simerman, J. D. Phan, D. A. Dumesic y G. D. Chazenbalk, “Muse cells: Nontumorigenic pluripotent stem cells present in adult tissues—A paradigm shift in tissue regeneration and evolution,” Stem Cells International, vol. 2016, pp. 1–8, Dic., 2016. doi:10.1155/2016/1463258.; [18] R. Lovell-Badge, “The future for stem cell research,” Nature, vol. 414, no. 6859, pp. 88–91, Nov., 2001. doi:10.1038/35102150.; [19] M. Dezawa, “Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration, “ Cell Transplant, vol. 25, no. 5, pp. 849-861, Feb., 2016. doi:10.3727/096368916X690881.; [20] I. L. Weissman y J. A. Shizuru, “The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases,” Blood, vol. 112, no. 9, pp. 3543–3553, Oct., 2008. doi:10.1182/blood-2008-08-078220.; [21] Y. Kuroda, M. Kitada, S. Wakao y M. Dezawa, “Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells?,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 5, pp. 369– 378, Jul., 2011. doi:10.1007/s00005-011-0139-9.; [22] Cell Culture Basics Handbook, Thermo Fischer Scientific Inc., Waltham, MA, USA, 2016, p. 19.; [23] L. A. Flanagan, B. Ziaeian, T. Palmer y P. H. Schwartz, “Immunocytochemical Analysis of Stem Cells,” en Human Stem Cell Manual. USA: Elsevier, 2007, cap. 9, pp. 108–126. doi:10.1016/B978-012370465-8/50014-4.; [24] S. Marchenko y L. Flanagan, “Immunocytochemistry: Human Neural Stem Cells,” Journal of Visualized Experiments, no. 7, Ago., 2007. doi:10.3791/267.; [25] P. A. Campbell, “Alkaline Phosphatase Staining,” Bio-Protocol, vol. 4, no. 5, Mar., 2014. doi:10.21769/BioProtoc.1060.; [26] T. Tian, R. Zhang, Y. Yang, Q. Liu, D. Li y X. Pan, “Muse cells derived from dermal tissues can differentiate into melanocytes,” Cellular Reprogramming, vol. 19, no. 2, pp. 116-122, Abr., 2017. doi:10.1089/cell.2016.0032.; [27] H. Yabuki, S. Wakao, Y. Kushida, M. Dezawa y Y.Okada, “Human multilineagedifferentiating stress-enduring cells exert pleiotropic effects to ameliorate acute lung ischemia-reperfusion injury in a rat model,” Cell Transplant, vol. 27, no. 6, pp. 979-993, Abr., 2018. doi:10.1177/0963689718761657.; [28] N. Uchida et al., “Beneficial effects of systemically administered human muse cells in adriamycin nephropathy,” Journal of the American Society of Nephrology, vol. 28, no. 10, pp. 2946-2960, Jul., 2017. doi:10.1681/asn.2016070775.; [29] J. Cao, Z. Yang, R. Xiao, y B. Pan, “Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells),” Regenerative Therapy, vol. 15, pp. 92–96, Dic., 2020. doi:10.1016/j.reth.2020.04.011.; [30] F. Motoe, T. Yamauchi, K. Yamasaki y S. Aiba, “LB1606 Retainability of pluripotency and viability of multilineage-differentiating stress enduring (Muse) cells after repeated cryopreservation,” Journal of Investigative Dermatology, vol. 138, no. 9, p. B23, Sep., 2018. doi:10.1016/j.jid.2018.06.147.; [31] T. Yamauchi, K. Yamasaki, K. Tsutiyama, S. Koike y S. Aiba, “904 Adipose multilineage-differentiating stress enduring (Muse) cell maintain pluripotency regardless of donors’ age,” Journal of Investigative Dermatology, vol. 137, no. 5, p. S156, Mayo, 2017. doi:10.1016/j.jid.2017.02.931.; [32] P. A. Neuta Arciniegas, “Implementación de un modelo pre-clínico con aloinjertos de células mesenquimales diferenciadas para prevenir la insuficiencia cardiaca crónica secundaria a un infarto agudo de miocardio,” Tesis Ph.D., Fac. Salud, Dpto. Ciencias Fisiológicas, Prog. Doctorado en Ciencias Biomédicas, Univ. del Valle, Santiago de Cali, Valle, 2013.; Universidad Autónoma de Occidente (UAO); Repositorio Educativo Digital; (2021) S. 8639
Veröffentlichung: Universidad Autónoma de Occidente (UAO) ; Ingeniería Biomédica ; Departamento de Automática y Electrónica ; Facultad de Ingeniería ; Cali, 2021
Medientyp: Hochschulschrift
DOI: 10.1073/pnas.0911647107
Schlagwort:
  • Ingeniería Biomédica
  • Células Muse
  • Incubación con tripsina a largo plazo
  • Inmunocitoquímica
  • Células madre
  • Medicina regenerativa
  • Ingeniería de tejidos
  • Stem cells
  • Regenerative medicine
  • Tissue engineering
  • Time: Universidad Autónoma de Occidente. Calle 24 115-85. Km 2 vía Cali - Jamundí
Sonstiges:
  • Nachgewiesen in: BASE
  • Sprachen: Spanish; Castilian
  • Collection: Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)
  • Document Type: bachelor thesis
  • File Description: 48 páginas; application/pdf
  • Language: Spanish; Castilian
  • Rights: Derechos reservados - Universidad Autónoma de Occidente, 2021 ; https://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess ; Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -