Zum Hauptinhalt springen

Distinct responses to warming within picoplankton communities across an environmental gradient.

Stevens, BLF ; Peacock, EE ; et al.
In: Global change biology, Jg. 30 (2024-05-01), Heft 5, S. e17316
Online academicJournal

Titel:
Distinct responses to warming within picoplankton communities across an environmental gradient.
Autor/in / Beteiligte Person: Stevens, BLF ; Peacock, EE ; Crockford, ET ; Shalapyonok, A ; Neubert, MG ; Sosik, HM
Link:
Zeitschrift: Global change biology, Jg. 30 (2024-05-01), Heft 5, S. e17316
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2024
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.17316
Schlagwort:
  • Seawater chemistry
  • Temperature
  • Synechococcus physiology
  • Synechococcus growth & development
  • Climate Change
  • Phytoplankton physiology
  • Seasons
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2024 May; Vol. 30 (5), pp. e17316.
  • MeSH Terms: Synechococcus* / physiology ; Synechococcus* / growth & development ; Climate Change* ; Phytoplankton* / physiology ; Seasons* ; Seawater / chemistry ; Temperature
  • References: Alegria Zufia, J., Farnelid, H., & Legrand, C. (2021). Seasonality of coastal picophytoplankton growth, nutrient limitation, and biomass contribution. Frontiers in Microbiology, 12, 786590. https://doi.org/10.3389/fmicb.2021.786590. ; Archibald, K. (2021). The role of zooplankton in regulating carbon export and phytoplankton community structure: Integrating models and observations. PhD thesis, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution). https://hdl.handle.net/1721.1/130751. ; Balch, W. M., Drapeau, D. T., Bowler, B. C., Record, N. R., Bates, N. R., Pinkham, S., Garley, R., & Mitchell, C. (2022). Changing hydrographic, biogeochemical, and acidification properties in the Gulf of Maine as measured by the Gulf of Maine North Atlantic time series, GNATS, between 1998 and 2018. Journal of Geophysical Research – Biogeosciences, 127(6), e2022JG006790. https://doi.org/10.1029/2022JG006790. ; Balode, M., Purina, I., Beéchemin, C., & Maestrini, S. Y. (1998). Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. Journal of Plankton Research, 20(12), 2251–2272. https://doi.org/10.1093/plankt/20.12.2251. ; Buck, K. R., Chavez, F., & Campbell, L. (1996). Basin‐wide distributions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquatic Microbial Ecology, 10, 283–298. https://doi.org/10.3354/ame010283. ; Campbell, L., & Vaulot, D. (1993). Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Research Part I: Oceanographic Research Papers, 40(10), 2043–2060. https://doi.org/10.1016/0967‐0637(93)90044‐4. ; Chen, Z., Kwon, Y., Chen, K., Fratantoni, P., Gawarkiewicz, G., & Joyce, T. M. (2020). Long‐term SST variability on the Northwest Atlantic continental shelf and slope. Geophysical Research Letters, 47(1), e85455. https://doi.org/10.1029/2019GL085455. ; Cheung, W. W. L., Dunne, J., Sarmiento, J. L., & Pauly, D. (2011). Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68(6), 1008–1018. https://doi.org/10.1093/icesjms/fsr012. ; Demory, D., Baudoux, A.‐C., Monier, A., Simon, N., Six, C., Ge, P., Rigaut‐Jalabert, F., Marie, D., Sciandra, A., Bernard, O., & Rabouille, S. (2019). Picoeukaryotes of the micromonas genus: Sentinels of a warming ocean. The ISME Journal, 13(1), 132–146. https://doi.org/10.1038/s41396‐018‐0248‐0. ; Díez, B., Pedrós‐Alió, C., & Massana, R. (2001). Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small‐subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67(7), 2932–2941. https://doi.org/10.1128/AEM.67.7.2932‐2941.2001. ; Domingues, R. B., Barbosa, A. B., Sommer, U., & Galvão, H. M. (2011). Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: Potential effects of cultural eutrophication. Aquatic Sciences, 73(3), 331–343. https://doi.org/10.1007/s00027‐011‐0180‐0. ; Doré, H., Leconte, J., Guyet, U., Breton, S., Farrant, G. K., Demory, D., Ratin, M., Hoebeke, M., Corre, E., Pitt, F. D., Ostrowski, M., Scanlan, D. J., Partensky, F., Six, C., & Garczarek, L. (2022). Global phylogeography of marine Synechococcus in coastal areas reveals strong community shifts. mSystems, 7(6), e00656‐22. https://doi.org/10.1128/msystems.00656‐22. ; Dugenne, M., Thyssen, M., Nerini, D., Mante, C., Poggiale, J.‐C., Garcia, N., Garcia, F., & Grégori, G. J. (2014). Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: An insight into specific population growth rates using a single cell high frequency approach. Frontiers in Microbiology, 5(485). https://doi.org/10.3389/fmicb.2014.00485. ; Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., & Martiny, A. C. (2013). Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9824–9829. https://doi.org/10.1073/pnas.1307701110. ; Flombaum, P., & Martiny, A. C. (2021). Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnology and Oceanography, 66(12), 4171–4181. https://doi.org/10.1002/lno.11951. ; Flombaum, P., Wang, W.‐L., Primeau, F. W., & Martiny, A. C. (2020). Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nature Geoscience, 13(2), 116–120. https://doi.org/10.1038/s41561‐019‐0524‐2. ; Fogg, G. E. (1986). Review lecture: Picoplankton. Proceedings of the Royal Society B, 228(1250), 1–30. https://www.jstor.org/stable/36133. ; Fowler, B. L., Neubert, M. G., Hunter‐Cevera, K. R., Olson, R. J., Shalapyonok, A., Solow, A. R., & Sosik, H. M. (2020). Dynamics and functional diversity of the smallest phytoplankton on the northeast US shelf. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117. ; Glover, H. E., Keller, M. D., & Guillard, R. R. L. (1986). Light quality and oceanic ultraphytoplankters. Nature, 319(6049), 142–143. https://doi.org/10.1038/319142a0. ; Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S. (2021). Future phytoplankton diversity in a changing climate. Nature Communications, 12(1), 5372. https://doi.org/10.1038/s41467‐021‐25699‐w. ; Hunter‐Cevera, K. R., Neubert, M., Olson, R., Shalapyonok, A., Solow, A., & Sosik, H. (2019). Seasons of Syn. Limnology and Oceanography, 65(5), 1085–1102. https://doi.org/10.1002/lno.11374. ; Hunter‐Cevera, K. R., Neubert, M. G., Olson, R. J., Solow, A. R., Shalapyonok, A., & Sosik, H. M. (2016). Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science, 354(6310), 326–329. https://doi.org/10.1126/science.aaf8536. ; Hunter‐Cevera, K. R., Neubert, M. G., Solow, A. R., Olson, R. J., Shalapyonok, A., & Sosik, H. M. (2014). Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9852–9857. https://doi.org/10.1073/pnas.1321421111. ; Hunter‐Cevera, K. R., Post, A. F., Peacock, E. E., & Sosik, H. M. (2016). Diversity of Synechococcus at the Martha's Vineyard Coastal Observatory: Insights from culture isolations, clone libraries, and flow cytometry. Microbial Ecology, 71(2), 276–289. https://doi.org/10.1007/s00248‐015‐0644‐1. ; Landry, M. R., Stukel, M. R., Selph, K. E., & Goericke, R. (2023). Coexisting picoplankton experience different relative grazing pressures across an ocean productivity gradient. Proceedings of the National Academy of Sciences of the United States of America, 120(44), e2220771120. https://doi.org/10.1073/pnas.2220771120. ; Li, Q., Edwards, K. F., Schvarcz, C. R., & Steward, G. F. (2022). Broad phylogenetic and functional diversity among mixotrophic consumers of Prochlorococcus. The ISME Journal, 16(6), 1557–1569. https://doi.org/10.1038/s41396‐022‐01204‐z. ; Marie, D., Rigaut‐Jalabert, F., & Vaulot, D. (2014). An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry. Part A, 85(11), 962–968. https://doi.org/10.1002/cyto.a.22517. ; Marrec, P., McNair, H., Franzè, G., Morison, F., Strock, J. P., & Menden‐Deuer, S. (2021). Seasonal variability in planktonic food web structure and function of the Northeast US Shelf. Limnology and Oceanography, 66(4), 1440–1458. https://doi.org/10.1002/lno.11696. ; Massana, R., & Logares, R. (2013). Eukaryotic versus prokaryotic marine picoplankton ecology: Marine ecology of picoeukaryotes and prokaryotes. Environmental Microbiology, 15(5), 1254–1261. https://doi.org/10.1111/1462‐2920.12043. ; McKie‐Krisberg, Z. M., & Sanders, R. W. (2014). Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. The ISME Journal, 8(10), 1953–1961. https://doi.org/10.1038/ismej.2014.16. ; Mills, K., Pershing, A., Brown, C., Chen, Y., Chiang, F.‐S., Holland, D., Lehuta, S., Nye, J., Sun, J., Thomas, A., & Wahle, R. (2013). Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography, 26(2), 191–195. https://doi.org/10.5670/oceanog.2013.27. ; Moon‐van Der Staay, S. Y., De Wachter, R., & Vaulot, D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409(6820), 607–610. https://doi.org/10.1038/35054541. ; NASA. (2023). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate‐resolution Imaging Spectroradiometer (MODIS) aqua photosynthetically active radiation data. NASA OB.DAAC, Greenbelt, MD, USA. https://oceancolor.gsfc.nasa.gov/. ; Olson, R. J., Chisholm, S. W., Zettler, E. R., Altabet, M. A., & Dusenberry, J. A. (1990). Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 37(6), 1033–1051. ; Olson, R. J., Shalapyonok, A., & Sosik, H. M. (2003). An automated submersible flow cytometer for analyzing pico‐ and nanophytoplankton: FlowCytobot. Deep‐Sea Research Part I, 50, 301–315. https://doi.org/10.1016/S0967‐0637(03)00003‐7. ; Peacock, E. E., Sosik, H. M., Stevens, B. L. F., & Crockford, E. T. (2024). Abundance, biovolume, and biomass of Synechococcus and eukaryote pico‐ and nano‐ phytoplankton, and heterotrophic bacteria from flow cytometry for water column bottle samples on NES‐LTER transect cruises, ongoing since 2018. Environmental Data Initiative. https://doi.org/10.6073/PASTA/BE91515864DAFE7D539C0858280BDDED. ; Ribalet, F., Swalwell, J., Clayton, S., Jiménez, V., Sudek, S., Lin, Y., Johnson, Z. I., Worden, A. Z., & Armbrust, E. V. (2015). Light‐driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8008–8012. https://doi.org/10.1073/pnas.1424279112. ; Schmidt, K., Birchill, A. J., Atkinson, A., Brewin, R. J. W., Clark, J. R., Hickman, A. E., Johns, D. G., Lohan, M. C., Milne, A., Pardo, S., Polimene, L., Smyth, T. J., Tarran, G. A., Widdicombe, C. E., Woodward, E. M. S., & Ussher, S. J. (2020). Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation. Global Change Biology, 26(10), 5574–5587. https://doi.org/10.1111/gcb.15161. ; Schmidt, K., Kähler, P., & von Bodungen, B. (1998). Copepod egg production rates in the Pomeranian Bay (Southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition. Marine Ecology Progress Series, 174, 183–195. https://www.jstor.org/stable/24831765. ; Shearman, R. K., & Lentz, S. J. (2010). Long‐term sea surface temperature variability along U.S. East Coast. Journal of Physical Oceanography, 40, 1004–1017. https://doi.org/10.1175/2009JPO4300.1. ; Sosik, H. M., Crockford, E. T., & Peacock, E. (2021). Dissolved inorganic nutrients from NES‐LTER transect cruises, including 4 macro‐nutrients from water column bottle samples, ongoing since 2017. Environmental Data Initiative. https://doi.org/10.6073/PASTA/EC6E5C76C7AD4E0DA0A8D1CEC84FA3F5. ; Sosik, H. M., Olson, R. J., Neubert, M. G., Shalapyonok, A., & Solow, A. R. (2003). Growth rates of coastal phytoplankton from time‐series measurements with a submersible flow cytometer. Limnology and Oceanography, 48(5), 1756–1765. https://doi.org/10.4319/lo.2003.48.5.1756. ; Stawiarski, B., Buitenhuis, E. T., & Le Quéré, C. (2016). The physiological response of picophytoplankton to temperature and its model representation. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00164. ; Stevens, B., Sosik, H. M., Peacock, E., & Crockford, E. (2023). Abundance, biovolume, and biomass of Synechococcus and eukaryote pico‐ and nano‐ plankton from continuous underway flow cytometry during NES‐LTER transect cruises, ongoing since 2018. Environmental Data Initiative. https://doi.org/10.6073/pasta/127dd033e69d0e1a3f4900d47254d425. ; Stevens, B. L. F., Crockford, E., Peacock, E., Neubert, M. G., & Sosik, H. M. (2023). Temperature regulates Synechococcus population dynamics seasonally and across the continental shelf. Limnology and Oceanography Letters. https://doi.org/10.1002/lol2.10331. ; Veldhuis, M., Kraay, G., & Timmermans, K. (2001). Cell death in phytoplankton: Correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. European Journal of Phycology, 36(2), 167–177. https://doi.org/10.1080/09670260110001735318. ; Visintini, N., Martiny, A. C., & Flombaum, P. (2021). Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnology and Oceanography Letters, 6(4), 207–215. https://doi.org/10.1002/lol2.10188. ; Wang, Z., Juarez, D. L., Pan, J., Blinebry, S. K., Gronniger, J., Clark, J. S., Johnson, Z. I., & Hunt, D. E. (2019). Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environmental Microbiology, 21(10), 3862–3872. https://doi.org/10.1111/1462‐2920.14734. ; Watson, R. A., Green, B. S., Tracey, S. R., Farmery, A., & Pitcher, T. J. (2016). Provenance of global seafood. Fish and Fisheries, 17, 585–595. https://doi.org/10.1111/faf.12129. ; Zeidner, G., Preston, C. M., Delong, E. F., Massana, R., Post, A. F., Scanlan, D. J., & Beja, O. (2003). Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environmental Microbiology, 5(3), 212–216. https://doi.org/10.1046/j.1462‐2920.2003.00403.x. ; Zubkov, M. V., & Tarran, G. A. (2008). High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature, 455(7210), 224–226. https://doi.org/10.1038/nature07236.
  • Grant Information: Audacious Project; 561126 Simons Foundation; 1655686 Division of Ocean Sciences; 1657803 Division of Ocean Sciences; 2322676 Division of Ocean Sciences
  • Contributed Indexing: Keywords: LTER; coastal ecology; continental shelf; niche correlation model; picophytoplankton; realized niche; stratification
  • Entry Date(s): Date Created: 20240520 Date Completed: 20240520 Latest Revision: 20240520
  • Update Code: 20240520

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -