Zum Hauptinhalt springen

Global warming significantly increases the risk of Pierce's disease epidemics in European vineyards.

Giménez-Romero, À ; Iturbide, M ; et al.
In: Scientific reports, Jg. 14 (2024-04-26), Heft 1, S. 9648
Online academicJournal

Titel:
Global warming significantly increases the risk of Pierce's disease epidemics in European vineyards.
Autor/in / Beteiligte Person: Giménez-Romero, À ; Iturbide, M ; Moralejo, E ; Gutiérrez, JM ; Matías, MA
Link:
Zeitschrift: Scientific reports, Jg. 14 (2024-04-26), Heft 1, S. 9648
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2024
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-024-59947-y
Schlagwort:
  • Europe epidemiology
  • Wine
  • Epidemics
  • Farms
  • Climate Change
  • Plant Diseases microbiology
  • Vitis microbiology
  • Xylella pathogenicity
  • Global Warming
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2024 Apr 26; Vol. 14 (1), pp. 9648. <i>Date of Electronic Publication: </i>2024 Apr 26.
  • MeSH Terms: Plant Diseases* / microbiology ; Vitis* / microbiology ; Xylella* / pathogenicity ; Global Warming* ; Europe / epidemiology ; Wine ; Epidemics ; Farms ; Climate Change
  • References: Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162. https://doi.org/10.1126/science.1063699 (2002). (PMID: 10.1126/science.106369912077394) ; Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554. https://doi.org/10.1038/s41558-020-0759-3 (2020). (PMID: 10.1038/s41558-020-0759-3) ; Rocklöv, J. & Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483. https://doi.org/10.1038/s41590-020-0648-y (2020). (PMID: 10.1038/s41590-020-0648-y323132427223823) ; Dudney, J. et al. Nonlinear shifts in infectious rust disease due to climate change. Nat. Commun. 12, 5102. https://doi.org/10.1038/s41467-021-25182-6 (2021). (PMID: 10.1038/s41467-021-25182-6344294058385051) ; Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715. https://doi.org/10.1038/s41558-021-01104-8 (2021). (PMID: 10.1038/s41558-021-01104-8) ; Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656. https://doi.org/10.1038/s41579-023-00900-7 (2023). (PMID: 10.1038/s41579-023-00900-73713107010153038) ; Bergot, M. et al. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Change Biol. 10, 1539–1552. https://doi.org/10.1111/j.1365-2486.2004.00824.x (2004). (PMID: 10.1111/j.1365-2486.2004.00824.x) ; Pangga, I. B., Hanan, J. & Chakraborty, S. Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathol. 60, 70–81. https://doi.org/10.1111/j.1365-3059.2010.02408.x (2011). (PMID: 10.1111/j.1365-3059.2010.02408.x) ; Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B 374, 20180269. https://doi.org/10.1098/rstb.2018.0269 (2019). (PMID: 10.1098/rstb.2018.0269) ; Juroszek, P. & von Tiedemann, A. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. J. Plant Dis. Prot. 122, 3–15. https://doi.org/10.1007/BF03356525 (2015). (PMID: 10.1007/BF03356525) ; Scherm, H. & Van Bruggen, A. Global warming and nonlinear growth: How important are changes in average temperature? Phytopathology 84, 1380–1384 (1994). ; Garrett, K. A. et al. Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathol. 60, 15–30. https://doi.org/10.1111/j.1365-3059.2010.02409.x (2011). (PMID: 10.1111/j.1365-3059.2010.02409.x) ; Jeger, M. & Bragard, C. The epidemiology of Xylella fastidiosa: A perspective on current knowledge and framework to investigate plant host-vector-pathogen interactions. Phytopathology 109, 200–209. https://doi.org/10.1094/PHYTO-07-18-0239-FI (2019). (PMID: 10.1094/PHYTO-07-18-0239-FI30365394) ; Redak, R. A. et al. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 49, 243–270. https://doi.org/10.1146/annurev.ento.49.061802.123403 (2004). (PMID: 10.1146/annurev.ento.49.061802.12340314651464) ; Tumber, K. P., Alston, J. M. & Fuller, K. B. Pierce’s disease costs California 104 million per year. Calif. Agric. 68, 20–29. https://doi.org/10.3733/ca.v068n01p20 (2014). (PMID: 10.3733/ca.v068n01p20) ; Delbianco, A. et al. A new resource for research and risk analysis: The updated European food safety authority database of Xylella spp. host plant species. Phytopathology 109, 213–215. https://doi.org/10.1094/PHYTO-09-18-0343-A (2019). (PMID: 10.1094/PHYTO-09-18-0343-A30418088) ; Almeida, R. P. & Purcell, A. H. Biological traits of Xylella fastidiosa strains from grapes and almonds. Appl. Environ. Microbiol. 69, 7447–7452. https://doi.org/10.1128/AEM.69.12.7447-7452.2003 (2003). (PMID: 10.1128/AEM.69.12.7447-7452.200314660397309917) ; Almeida, R. P. & Nunney, L. How do plant diseases caused by Xylella fastidiosa emerge? Plant Dis. 99, 1457–1467. https://doi.org/10.1094/PDIS-02-15-0159-FE (2015). (PMID: 10.1094/PDIS-02-15-0159-FE30695952) ; Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 95, 1 (2013). ; Olmo, D. et al. Landscape epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy 11, 473. https://doi.org/10.3390/agronomy11030473 (2021). (PMID: 10.3390/agronomy11030473) ; Denancé, N. et al. Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol. 66, 1054–1064. https://doi.org/10.1111/ppa.12695 (2017). (PMID: 10.1111/ppa.12695) ; Marco-Noales, E. et al. Evidence that Xylella fastidiosa is the causal agent of almond leaf scorch disease in Alicante, mainland Spain (Iberian Peninsula). Plant Dis. 105, 3349–3352. https://doi.org/10.1094/PDIS-03-21-0625-SC (2021). (PMID: 10.1094/PDIS-03-21-0625-SC33973814) ; Zecharia, N. et al. Xylella fastidiosa outbreak in Israel: Population genetics, host range, and temporal and spatial distribution analysis. Phytopathology 112, 2296–2309. https://doi.org/10.1094/PHYTO-03-22-0105-R (2022). (PMID: 10.1094/PHYTO-03-22-0105-R35778787) ; Carvalho-Luis, C., Rodrigues, J. M. & Martins, L. M. Dispersion of the bacterium Xylella fastidiosa in Portugal. J. Agric. Sci. Technol. A 12, 35–41. https://doi.org/10.17265/2161-6256/2022.01.005 (2022). (PMID: 10.17265/2161-6256/2022.01.005) ; Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: When an old acquaintance becomes a new threat to European agriculture. J. Pest. Sci. 91, 957–972. https://doi.org/10.1007/s10340-018-0966-0 (2018). (PMID: 10.1007/s10340-018-0966-0) ; Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. & Rossi, J.-P. Xylella fastidiosa: Climate suitability of European continent. Sci. Rep. 9, 8844. https://doi.org/10.1038/s41598-019-45365-y (2019). (PMID: 10.1038/s41598-019-45365-y312220076586794) ; Godefroid, M. et al. Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa. J. Pest. Sci. 95, 855–868. https://doi.org/10.1007/s10340-021-01413-z (2022). (PMID: 10.1007/s10340-021-01413-z) ; Giménez-Romero, A. et al. Global predictions for the risk of establishment of Pierce’s disease of grapevines. Commun. Biol. 5, 1389. https://doi.org/10.1038/s42003-022-04358-w (2022). (PMID: 10.1038/s42003-022-04358-w365395239768138) ; Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A. & Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invas. 18, 1759–1768. https://doi.org/10.1007/s10530-016-1118-1 (2016). (PMID: 10.1007/s10530-016-1118-1) ; Schneider, K. et al. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. 117, 9250–9259. https://doi.org/10.1073/pnas.1912206117 (2020). (PMID: 10.1073/pnas.1912206117322844117196823) ; Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. & Rossi, J.-P. Forecasting future range shifts of Xylella fastidiosa under climate change. Plant Pathol. 71, 1839–1848. https://doi.org/10.1111/ppa.13637 (2022). (PMID: 10.1111/ppa.13637) ; Jacob, D. et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change 20, 51. https://doi.org/10.1007/s10113-020-01606-9 (2020). (PMID: 10.1007/s10113-020-01606-9) ; Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the e-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409. https://doi.org/10.1029/2017JD028200 (2018). (PMID: 10.1029/2017JD028200) ; Muñoz-Sabater, J. et al. ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383. https://doi.org/10.5194/essd-13-4349-2021 (2021). (PMID: 10.5194/essd-13-4349-2021) ; Giorgi, F. & Gutowski, W. J. Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour. 40, 467–490. https://doi.org/10.1146/annurev-environ-102014-021217 (2015). (PMID: 10.1146/annurev-environ-102014-021217) ; Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 (2012). (PMID: 10.1175/BAMS-D-11-00094.1) ; Diez-Sierra, J. et al. Consistency of the regional response to global warming levels from CMIP5 and CORDEX projections. Clim. Dyn. 37, 4047–4060. https://doi.org/10.1007/s00382-023-06790-y (2023). (PMID: 10.1007/s00382-023-06790-y) ; Iturbide, M. et al. Repository Supporting the Implementation of FAIR Principles in the IPCC-WGI Atlas. https://doi.org/10.5281/zenodo.5171760 . ; Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006). (PMID: 10.1016/j.ecolmodel.2005.03.026) ; What is GBIF?. https://www.gbif.org/what-is-gbif . ; GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.k5ezjg (2022). ; Iturbide, M. et al. A framework for species distribution modelling with improved pseudo-absence generation. Ecol. Model. 312, 166–174. https://doi.org/10.1016/j.ecolmodel.2015.05.018 (2015). (PMID: 10.1016/j.ecolmodel.2015.05.018) ; Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055. https://doi.org/10.1038/nature08649 (2009). (PMID: 10.1038/nature0864920033047) ; Garcia Molinos, J. & Brown, C. Jorgarmol/vocc: First Release vocc. https://doi.org/10.5281/zenodo.3382092 (2019). ; García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. Vocc: An R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202. https://doi.org/10.1111/2041-210X.13295 (2019). (PMID: 10.1111/2041-210X.13295) ; Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009). ; Met Office. Cartopy: A Cartographic Python Library with a Matplotlib Interface (Exeter, 2010–2015). ; Elson, P. et al. Scitools/cartopy: v0.21.1. https://doi.org/10.5281/zenodo.7430317 (2022). ; Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88. https://doi.org/10.1111/j.0033-0124.1992.00084.x (2010). (PMID: 10.1111/j.0033-0124.1992.00084.x) ; Giménez-Romero, A. http://pdrisk.ifisc.uib-csic.es/future (2023). ; Candiago, S., Tscholl, S., Bassani, L., Fraga, H. & Egarter Vigl, L. A geospatial inventory of regulatory information for wine protected designations of origin in Europe. Sci. Data 9, 394. https://doi.org/10.1038/s41597-022-01513-0 (2022). (PMID: 10.1038/s41597-022-01513-0358212139276794) ; Giménez-Romero, A., Flaquer-Galmés, R. & Matías, M. A. Vector-borne diseases with nonstationary vector populations: The case of growing and decaying populations. Phys. Rev. E 106, 054402. https://doi.org/10.1103/PhysRevE.106.054402 (2022). (PMID: 10.1103/PhysRevE.106.05440236559381) ; Moralejo, E. et al. Insights into the epidemiology of Pierce’s disease in vineyards of Mallorca, Spain. Plant Pathol. 68, 1458–1471. https://doi.org/10.1111/ppa.13076 (2019). (PMID: 10.1111/ppa.13076) ; Venette, R. C. et al. Pest risk maps for invasive alien species: A roadmap for improvement. Bioscience 60, 349–362. https://doi.org/10.1525/bio.2010.60.5.5 (2010). (PMID: 10.1525/bio.2010.60.5.5) ; Hannah, L. et al. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. 110, 6907–6912. https://doi.org/10.1073/pnas.1210127110 (2013). (PMID: 10.1073/pnas.1210127110235692313637704) ; Moriondo, M. et al. Projected shifts of wine regions in response to climate change. Clim. Change 119, 825–839. https://doi.org/10.1007/s10584-013-0739-y (2013). (PMID: 10.1007/s10584-013-0739-y) ; Fellmann, T. et al. Major challenges of integrating agriculture into climate change mitigation policy frameworks. Mitig. Adapt. Strat. Glob. Change 23, 451–468. https://doi.org/10.1007/s11027-017-9743-2 (2018). (PMID: 10.1007/s11027-017-9743-2) ; European Union, Copernicus Land Monitoring Service 2018 & European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corine-land-cover (2018). ; Giménez-Romero, A., Iturbide, M., Moralejo, E., Gutiérrez, J. M. & Matías, M. A. Contrasting patterns of Pierce’s disease risk in European vineyards under global warming. Zenodo. https://doi.org/10.5281/zenodo.8154524 (2023). (PMID: 10.5281/zenodo.8154524) ; Giménez-Romero, A. https://github.com/agimenezromero/PierceDisease-GlobalRisk-Predictions (2022).
  • Grant Information: PID2021-123723OB-C22 Agencia Estatal de Investigación; PID2019-111481RB-I00 Agencia Estatal de Investigación; UERRA Sixth Framework Programme
  • SCR Organism: Xylella fastidiosa
  • Entry Date(s): Date Created: 20240426 Date Completed: 20240426 Latest Revision: 20240429
  • Update Code: 20240430

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -