Zum Hauptinhalt springen

Mismatch novelty exploration training shifts VPAC <subscript>1</subscript> receptor-mediated modulation of hippocampal synaptic plasticity by endogenous VIP in male rats.

Aidil-Carvalho, F ; Caulino-Rocha, A ; et al.
In: Journal of neuroscience research, Jg. 102 (2024-04-01), Heft 4, S. e25333
Online academicJournal

Titel:
Mismatch novelty exploration training shifts VPAC <subscript>1</subscript> receptor-mediated modulation of hippocampal synaptic plasticity by endogenous VIP in male rats.
Autor/in / Beteiligte Person: Aidil-Carvalho, F ; Caulino-Rocha, A ; Ribeiro, JA ; Cunha-Reis, D
Link:
Zeitschrift: Journal of neuroscience research, Jg. 102 (2024-04-01), Heft 4, S. e25333
Veröffentlichung: New York, NY : Wiley Interscience ; <i>Original Publication</i>: New York, Liss., 2024
Medientyp: academicJournal
ISSN: 1097-4547 (electronic)
DOI: 10.1002/jnr.25333
Schlagwort:
  • Animals
  • Male
  • Rats
  • CA1 Region, Hippocampal metabolism
  • CA1 Region, Hippocampal physiology
  • Long-Term Potentiation physiology
  • Rats, Wistar
  • Exploratory Behavior physiology
  • Hippocampus metabolism
  • Hippocampus physiology
  • Neuronal Plasticity physiology
  • Receptors, Vasoactive Intestinal Polypeptide, Type I metabolism
  • Vasoactive Intestinal Peptide metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Neurosci Res] 2024 Apr; Vol. 102 (4), pp. e25333.
  • MeSH Terms: Exploratory Behavior* / physiology ; Hippocampus* / metabolism ; Hippocampus* / physiology ; Neuronal Plasticity* / physiology ; Receptors, Vasoactive Intestinal Polypeptide, Type I* / metabolism ; Vasoactive Intestinal Peptide* / metabolism ; Animals ; Male ; Rats ; CA1 Region, Hippocampal / metabolism ; CA1 Region, Hippocampal / physiology ; Long-Term Potentiation / physiology ; Rats, Wistar
  • References: Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130. https://doi.org/10.1016/S0166‐2236(96)80018‐X. ; Acsády, L., Görcs, T. J., & Freund, T. F. (1996). Different populations of vasoactive intestinal polypeptide‐immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience, 73, 317–334. https://doi.org/10.1016/0306‐4522(95)00609‐5. ; Aidil‐Carvalho, F., Caulino‐Rocha, A., Ribeiro, J., & Cunha‐Reis, D. (2022). Mismatch novelty exploration training impairs VPAC1 receptor mediated modulation of hippocampal synaptic plasticity by endogenous VIP. bioRxiv, 2022.12.21.521348. https://doi.org/10.1101/2022.12.21.521348. ; Aidil‐Carvalho, M. F., Carmo, A. J. S., Ribeiro, J. A., & Cunha‐Reis, D. (2017). Mismatch novelty exploration training enhances hippocampal synaptic plasticity: A tool for cognitive stimulation? Neurobiology of Learning and Memory, 145, 240–250. https://doi.org/10.1016/j.nlm.2017.09.004. ; Alberini, C. M., & Ledoux, J. E. (2013). Memory reconsolidation. Current Biology, 23, R746–R750. https://doi.org/10.1016/j.cub.2013.06.046. ; Amaro‐Leal, A., Rocha, I., & Cunha‐Reis, D. (2016). Training in novelty exploration tasks prevents cognitive decline in a rat model of TLE. Epilepsia, 57, 47. ; Anderson, W. W., & Collingridge, G. L. (2001). The LTP program: A data acquisition program for on‐line analysis of long‐term potentiation and other synaptic events. Journal of Neuroscience Methods, 108, 71–83. https://doi.org/10.1016/s0165‐0270(01)00374‐0. ; Borhegyi, Z., Varga, V., Szilágyi, N., Fabo, D., & Freund, T. F. (2004). Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. Journal of Neuroscience, 24(39), 8470–8479. https://doi.org/10.1523/JNEUROSCI.1413‐04.2004. ; Brown, G. R., & Nemes, C. (2008). The exploratory behaviour of rats in the hole‐board apparatus: Is head‐dipping a valid measure of neophilia? Behavioural Processes, 78, 442–448. https://doi.org/10.1016/j.beproc.2008.02.019. ; Carvalho‐Rosa, J. D., Rodrigues, N. C., Silva‐Cruz, A., Vaz, S. H., & Cunha‐Reis, D. (2023). Epileptiform activity influences theta‐burst induced LTP in the adult hippocampus: A role for synaptic lipid raft disruption in early metaplasticity? Frontiers in Cellular Neuroscience, 17, 184. https://doi.org/10.3389/FNCEL.2023.1117697. ; Caulino‐Rocha, A., Rodrigues, N. C., Ribeiro, J. A., & Cunha‐Reis, D. (2022). Endogenous VIP VPAC1 receptor activation modulates hippocampal theta burst induced LTP: Transduction pathways and GABAergic mechanisms. Biology, 11, 627. https://doi.org/10.3390/BIOLOGY11050627. ; Chater, T. E., & Goda, Y. (2022). The shaping of AMPA receptor surface distribution by neuronal activity. Frontiers in Synaptic Neuroscience, 14, 13. https://doi.org/10.3389/fnsyn.2022.833782. ; Chen, J., Cook, P. A., & Wagner, A. D. (2015). Prediction strength modulates responses in human area CA1 to sequence violations. Journal of Neurophysiology, 114, 1227–1238. https://doi.org/10.1152/jn.00149.2015. ; Collins, S. A., & Ninan, I. (2021). Development‐dependent plasticity in vasoactive intestinal polypeptide neurons in the infralimbic cortex. Cerebral Cortex Communications, 2, 1–11. https://doi.org/10.1093/TEXCOM/TGAB007. ; Crusio, W. E., Schwegler, H., & van Abeelen, J. H. F. (1989). Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis. Behavioural Brain Research, 32, 81–88. https://doi.org/10.1016/S0166‐4328(89)80075‐0. ; Cunha‐Reis, D. (2020). Mismatch novelty exploration training shaping of hippocampal synaptic plasticity and cognition and the role of disinhibition and VIP expressing interneurons. Biomedical and Biopharmaceutical Research, 17, 3. https://doi.org/10.19277/bbr.17.2.243. ; Cunha‐Reis, D., Aidil‐Carvalho, F., Ribeiro, J. A., Aidil‐Carvalho, M. F., & Ribeiro, J. A. (2014). Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors. Hippocampus, 24, 1353–1363. https://doi.org/10.1002/hipo.22316. ; Cunha‐Reis, D., & Caulino‐Rocha, A. (2020). VIP modulation of hippocampal synaptic plasticity: A role for VIP receptors as therapeutic targets in cognitive decline and mesial temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 14, 153. https://doi.org/10.3389/fncel.2020.00153. ; Cunha‐Reis, D., Caulino‐Rocha, A., & Correia‐de‐Sá, P. (2021). VIPergic neuroprotection in epileptogenesis: Challenges and opportunities. Pharmacological Research, 164, 105356. https://doi.org/10.1016/j.phrs.2020.105356. ; Cunha‐Reis, D., Ribeiro, J. A., de Almeida, R. F. M., & Sebastião, A. M. (2017). VPAC1 and VPAC2 receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways. British Journal of Pharmacology, 174, 4725–4737. https://doi.org/10.1111/bph.14051. ; Dong, Z., Bai, Y., Wu, X., Li, H., Gong, B., Howland, J. G., Huang, Y., He, W., Li, T., & Wang, Y. T. (2013). Hippocampal long‐term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology, 64, 65–73. https://doi.org/10.1016/j.neuropharm.2012.06.027. ; Dong, Z., Gong, B., Li, H., Bai, Y., Wu, X., Huang, Y., He, W., Li, T., & Wang, Y. T. (2012). Mechanisms of hippocampal long‐term depression are required for memory enhancement by novelty exploration. The Journal of Neuroscience, 32, 11980–11990. https://doi.org/10.1523/JNEUROSCI.0984‐12.2012. ; Duncan, K., Ketz, N., Inati, S. J., & Davachi, L. (2012). Evidence for area CA1 as a match/mismatch detector: A high‐resolution fMRI study of the human hippocampus. Hippocampus, 22, 389–398. https://doi.org/10.1002/hipo.20933. ; Francavilla, R., Villette, V., Luo, X., Chamberland, S., Muñoz‐Pino, E., Camiré, O., Wagner, K., Kis, V., Somogyi, P., & Topolnik, L. (2018). Connectivity and network state‐dependent recruitment of long‐range VIP‐GABAergic neurons in the mouse hippocampus. Nature Communications, 9, 5043. https://doi.org/10.1038/s41467‐018‐07162‐5. ; Garrido, M. I., Barnes, G. R., Kumaran, D., Maguire, E. A., & Dolan, R. J. (2015). Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. NeuroImage, 120, 362–370. https://doi.org/10.1016/j.neuroimage.2015.07.016. ; Ge, Y., Dong, Z., Bagot, R. C., Howland, J. G., Phillips, A. G., Wong, T. P., & Wang, Y. T. (2010). Hippocampal long‐term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 107, 16697–16702. https://doi.org/10.1073/pnas.1008200107. ; Goh, J. J., & Manahan‐Vaughan, D. (2013a). Hippocampal long‐term depression in freely behaving mice requires the activation of beta‐adrenergic receptors. Hippocampus, 23, 1299–1308. https://doi.org/10.1002/hipo.22168. ; Goh, J. J., & Manahan‐Vaughan, D. (2013b). Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cerebral Cortex, 23, 1118–1125. https://doi.org/10.1093/cercor/bhs089. ; Good, M., Day, M., & Muir, J. L. (1999). Cyclical changes in endogenous levels of oestrogen modulate the induction of LTD and LTP in the hippocampal CA1 region. European Journal of Neuroscience, 11(12), 4476–4480. https://doi.org/10.1046/J.1460‐9568.1999.00920.X. ; Hagena, H., & Manahan‐Vaughan, D. (2017). The serotonergic 5‐HT4 receptor: A unique modulator of hippocampal synaptic information processing and cognition. Neurobiology of Learning and Memory, 138, 145–153. https://doi.org/10.1016/j.nlm.2016.06.014. ; Izquierdo, L. A., Viola, H., Barros, D. M., Alonso, M., Vianna, M. R. M., Furman, M., Levi de Stein, M., Szapiro, G., Rodrigues, C., Choi, H., Medina, J. H., & Izquierdo, I. (2001). Novelty enhances retrieval: Molecular mechanisms involved in rat hippocampus. The European Journal of Neuroscience, 13, 1464–1467. https://doi.org/10.1046/j.0953‐816X.2001.01530.x. ; Kanari, K., Kikusui, T., Takeuchi, Y., & Mori, Y. (2005). Multidimensional structure of anxiety‐related behavior in early‐weaned rats. Behavioural Brain Research, 156, 45–52. https://doi.org/10.1016/j.bbr.2004.05.008. ; Kemp, A., & Manahan‐Vaughan, D. (2004). Hippocampal long‐term depression and long‐term potentiation encode different aspects of novelty acquisition. Proceedings of the National Academy of Sciences of the United States of America, 101, 8192–8197. https://doi.org/10.1073/pnas.0402650101. ; Kitchigina, V. F., Kudina, T. A., Kutyreva, E. V., & Vinogradova, O. S. (1999). Neuronal activity of the septal pacemaker of theta rhythm under the influence of stimulation and blockade of the median raphe nucleus in the awake rabbit. Neuroscience, 94, 453–463. https://doi.org/10.1016/s0306‐4522(99)00258‐4. ; Luo, X., Guet‐Mccreight, A., Villette, V., Francavilla, R., Marino, B., Chamberland, S., Skinner, F. K., & Topolnik, L. (2020). Synaptic mechanisms underlying the network state‐dependent recruitment of VIP‐expressing interneurons in the CA1 hippocampus. Cerebral Cortex, 30, 3667–3685. https://doi.org/10.1093/cercor/bhz334. ; Malik, R., Li, Y., Schamiloglu, S., & Sohal, V. S. (2022). Top‐down control of hippocampal signal‐to‐noise by prefrontal long‐range inhibition. Cell, 185, 1602–1617.e17. https://doi.org/10.1016/j.cell.2022.04.001. ; Manahan‐Vaughan, D., & Braunewell, K. H. (1999). Novelty acquisition is associated with induction of hippocampal long‐term depression. Proceedings of the National Academy of Sciences of the United States of America, 96, 8739–8744. http://www.ncbi.nlm.nih.gov/pubmed/10411945. ; Moncada, D., & Viola, H. (2007). Induction of long‐term memory by exposure to novelty requires protein synthesis: Evidence for a behavioral tagging. The Journal of Neuroscience, 27, 7476–7481. https://doi.org/10.1523/JNEUROSCI.1083‐07.2007. ; Moreno‐Castilla, P., Pérez‐Ortega, R., Violante‐Soria, V., Balderas, I., & Bermúdez‐Rattoni, F. (2017). Hippocampal release of dopamine and norepinephrine encodes novel contextual information. Hippocampus, 27, 547–557. https://doi.org/10.1002/hipo.22711. ; Park, A. J., Harris, A. Z., Martyniuk, K. M., Chang, C. Y., Abbas, A. I., Lowes, D. C., Kellendonk, C., Gogos, J. A., & Gordon, J. A. (2021). Reset of hippocampal–prefrontal circuitry facilitates learning. Nature, 591, 615–619. https://doi.org/10.1038/s41586‐021‐03272‐1. ; Pedreira, M. E., Pérez‐Cuesta, L. M., & Maldonado, H. (2004). Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learning & Memory, 11, 579–585. https://doi.org/10.1101/lm.76904. ; Pizzarelli, R., Griguoli, M., Zacchi, P., Petrini, E. M., Barberis, A., Cattaneo, A., & Cherubini, E. (2020). Tuning GABAergic inhibition: Gephyrin molecular organization and functions. Neuroscience, 439, 125–136. ; Qi, Y., Hu, N. W., & Rowan, M. J. (2013). Switching off LTP: MGlu and NMDA receptor‐dependent novelty exploration‐induced depotentiation in the rat hippocampus. Cerebral Cortex, 23, 932–939. https://doi.org/10.1093/cercor/bhs086. ; Quent, J. A., Henson, R. N., & Greve, A. (2021). A predictive account of how novelty influences declarative memory. Neurobiology of Learning and Memory, 179, 107382. https://doi.org/10.1016/j.nlm.2021.107382. ; Ribeiro, J. A., Cunha‐Reis, D., Lopes, L. V., Coelho, J. E., Costenla, A. R., Correia‐de‐Sá, P., Cunha, R. A., de Mendonça, A., & Sebastião, A. M. (2001). Adenosine receptor interactions in the hippocampus. Drug Development Research, 52, 337–345. https://doi.org/10.1002/ddr.1132. ; Rodrigues, N. C., Silva‐Cruz, A., Caulino‐Rocha, A., Bento‐Oliveira, A., Alexandre Ribeiro, J., & Cunha‐Reis, D. (2021). Hippocampal CA1 theta burst‐induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. The European Journal of Neuroscience, 54, 5272–5292. https://doi.org/10.1111/ejn.15390. ; Sachser, R. M., Haubrich, J., Lunardi, P. S., & de Oliveira Alvares, L. (2017). Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology, 112, 94–103. Retrieved July 29, 2017, from http://www.sciencedirect.com/science/article/pii/S002839081630301X?via%3Dihub. ; Schiffer, A. M., Ahlheim, C., Wurm, M. F., & Schubotz, R. I. (2012). Surprised at all the entropy: Hippocampal, caudate and midbrain contributions to learning from prediction errors. PLoS One, 7, e36445. https://doi.org/10.1371/journal.pone.0036445. ; Schmidt, S. D., Zinn, C. G., Behling, J. A. K., Furian, A. F., Furini, C. R. G., de Carvalho Myskiw, J., & Izquierdo, I. (2021). Inhibition of PACAP/PAC1/VPAC2 signaling impairs the consolidation of social recognition memory and nitric oxide prevents this deficit. Neurobiology of Learning and Memory, 180, 107423. https://doi.org/10.1016/J.NLM.2021.107423. ; Schneider, P., Ho, Y.‐J., Spanagel, R., & Pawlak, C. R. (2011). A novel elevated plus‐maze procedure to avoid the one‐trial tolerance problem. Frontiers in Behavioral Neuroscience, 5, 43. https://doi.org/10.3389/fnbeh.2011.00043. ; Schomaker, J., & Meeter, M. (2015). Short‐ and long‐lasting consequences of novelty, deviance and surprise on brain and cognition. Neuroscience and Biobehavioral Reviews, 55, 268–279. https://doi.org/10.1016/j.neubiorev.2015.05.002. ; Solés‐Tarrés, I., Cabezas‐Llobet, N., Vaudry, D., & Xifró, X. (2020). Protective effects of pituitary adenylate cyclase‐activating polypeptide and vasoactive intestinal peptide against cognitive decline in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 14, 221. https://doi.org/10.3389/fncel.2020.00221. ; Stack, C. M., Lim, M. A., Cuasay, K., Stone, M. M., Seibert, K. M., Spivak‐Pohis, I., Crawley, J. N., Waschek, J. A., & Hill, J. M. (2008). Deficits in social behavior and reversal learning are more prevalent in male offspring of VIP deficient female mice. Experimental Neurology, 211, 67–84. https://doi.org/10.1016/j.expneurol.2008.01.003. ; Thakral, P. P., Yu, S. S., & Rugg, M. D. (2015). The hippocampus is sensitive to the mismatch in novelty between items and their contexts. Brain Research, 1602, 144–152. https://doi.org/10.1016/j.brainres.2015.01.033. ; Trempler, I., Schiffer, A. M., El‐Sourani, N., Ahlheim, C., Fink, G. R., & Schubotz, R. I. (2017). Frontostriatal contribution to the interplay of flexibility and stability in serial prediction. Journal of Cognitive Neuroscience, 29, 298–309. https://doi.org/10.1162/jocn_a_01040. ; Turi, G. F., Li, W. K., Chavlis, S., Pandi, I., O'Hare, J., Priestley, J. B., Grosmark, A. D., Liao, Z., Ladow, M., Zhang, J. F., Zemelman, B. V., Poirazi, P., & Losonczy, A. (2019). Vasoactive intestinal polypeptide‐expressing interneurons in the hippocampus support goal‐oriented spatial learning. Neuron, 101, 1150–1165.e8. https://doi.org/10.1016/j.neuron.2019.01.009. ; Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., Venance, L., Freund, T. F., & Buzsáki, G. (2014). Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13535–13540. https://doi.org/10.1073/pnas.1411233111. ; Vinogradova, O. S. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11, 578–598. https://doi.org/10.1002/hipo.1073. ; Vinogradova, O. S., Kitchigina, V. F., Kudina, T. A., & Zenchenko, K. I. (1999). Spontaneous activity and sensory responses of hippocampal neurons during persistent theta‐rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience, 94(3), 745–753. https://doi.org/10.1016/s0306‐4522(99)00253‐5. ; Volianskis, A., & Jensen, M. S. (2003). Transient and sustained types of long‐term potentiation in the CA1 area of the rat hippocampus. The Journal of Physiology, 550, 459–492. https://doi.org/10.1113/JPHYSIOL.2003.044214. ; Wagner, J. J., & Alger, B. E. (1995). GABAergic and developmental influences on homosynaptic LTD and depotentiation in rat hippocampus. The Journal of Neuroscience, 15, 1577–1586. http://www.ncbi.nlm.nih.gov/pubmed/7869119. ; Walling, S. G., Brown, R. A. M., Milway, J. S., Earle, A. G., & Harley, C. W. (2011). Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus, 21, 1250–1262. https://doi.org/10.1002/hipo.20816. ; Warren, S. G., Humphreys, A. G., Juraska, J. M., & Greenough, W. T. (1995). LTP varies across the estrous cycle: Enhanced synaptic plasticity in proestrus rats. Brain Research, 703(1–2), 26–30. https://doi.org/10.1016/0006‐8993(95)01059‐9.
  • Grant Information: DL57/2016/CP1479/CT0044 to DCR Fundação para a Ciência e a Tecnologia; PTDC/SAUPUB/28311/2017 to DCR Fundação para a Ciência e a Tecnologia; UIDB/04046/2020 Fundação para a Ciência e a Tecnologia; UIDP/04046/2020 Fundação para a Ciência e a Tecnologia; MScfellowshiptoFAC Instituto Português para o Desenvolvimento
  • Contributed Indexing: Keywords: LTP; RRID:AB_2113602; RRID:AB_2113725; RRID:AB_2210206; RRID:AB_2289225; RRID:AB_2341081; RRID:AB_2810215; RRID:AB_2878233; RRID:AB_561221; RRID:AB_887905; VIP; VPAC1 receptors; cognitive training; depotentiation; disinhibition; hippocampus; interneurons; memory; mismatch novelty
  • Substance Nomenclature: 0 (Receptors, Vasoactive Intestinal Polypeptide, Type I) ; 37221-79-7 (Vasoactive Intestinal Peptide)
  • Entry Date(s): Date Created: 20240424 Date Completed: 20240424 Latest Revision: 20240502
  • Update Code: 20240503

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -