Zum Hauptinhalt springen

The prenatal use of agmatine prevents social behavior deficits in VPA-exposed mice by activating the ERK/CREB/BDNF signaling pathway.

Chen, S ; Xu, Q ; et al.
In: Birth defects research, Jg. 116 (2024-04-01), Heft 4, S. e2336
Online academicJournal

Titel:
The prenatal use of agmatine prevents social behavior deficits in VPA-exposed mice by activating the ERK/CREB/BDNF signaling pathway.
Autor/in / Beteiligte Person: Chen, S ; Xu, Q ; Zhao, L ; Zhang, M ; Xu, H
Link:
Zeitschrift: Birth defects research, Jg. 116 (2024-04-01), Heft 4, S. e2336
Veröffentlichung: Hoboken, N.J. : John Wiley & Sons, Inc., 2024
Medientyp: academicJournal
ISSN: 2472-1727 (electronic)
DOI: 10.1002/bdr2.2336
Schlagwort:
  • Animals
  • Female
  • Male
  • Mice
  • Pregnancy
  • Brain-Derived Neurotrophic Factor
  • Calcium Carbonate
  • Rodentia
  • Signal Transduction
  • Social Behavior
  • Valproic Acid adverse effects
  • Agmatine pharmacology
  • Autism Spectrum Disorder chemically induced
  • Autism Spectrum Disorder drug therapy
  • Autism Spectrum Disorder prevention & control
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Birth Defects Res] 2024 Apr; Vol. 116 (4), pp. e2336.
  • MeSH Terms: Agmatine* / pharmacology ; Autism Spectrum Disorder* / chemically induced ; Autism Spectrum Disorder* / drug therapy ; Autism Spectrum Disorder* / prevention & control ; Animals ; Female ; Male ; Mice ; Pregnancy ; Brain-Derived Neurotrophic Factor ; Calcium Carbonate ; Rodentia ; Signal Transduction ; Social Behavior ; Valproic Acid / adverse effects
  • References: Ahmad, S. F., Ansari, M. A., Nadeem, A., Alzahrani, M. Z., Bakheet, S. A., & Attia, S. M. (2018). Resveratrol improves neuroimmune dysregulation through the inhibition of neuronal toll‐like receptors and COX‐2 signaling in BTBR T(+) Itpr3(tf)/J mice. Neuromolecular Medicine, 20, 133–146. ; Ahmad, S. F., Ansari, M. A., Nadeem, A., Bakheet, S. A., Al‐Ayadhi, L. Y., & Attia, S. M. (2017). Toll‐like receptors, NF‐kappaB, and IL‐27 mediate adenosine A2A receptor signaling in BTBR T(+) Itpr3(tf)/J mice. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 79, 184–191. ; Ahmad, S. F., Ansari, M. A., Nadeem, A., Bakheet, S. A., Almutairi, M. M., & Attia, S. M. (2017). Adenosine A2A receptor signaling affects IL‐21/IL‐22 cytokines and GATA3/T‐bet transcription factor expression in CD4(+) T cells from a BTBR T(+) Itpr3tf/J mouse model of autism. Journal of Neuroimmunology, 311, 59–67. ; Ahmad, S. F., Ansari, M. A., Nadeem, A., Bakheet, S. A., Alqahtani, F., Alhoshani, A. R., Alasmari, F., Alsaleh, N. B., & Attia, S. M. (2020). 5‐Aminoisoquinolinone attenuates social behavior deficits and immune abnormalities in the BTBR T(+) Itpr3(tf)/J mouse model for autism. Pharmacology, Biochemistry, and Behavior, 189, 172859. ; Ansari, M. A., Attia, S. M., Nadeem, A., Bakheet, S. A., Raish, M., Khan, T. H., Al‐Shabanah, O. A., & Ahmad, S. F. (2017). Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T(+) Itpr3(tf)/J mice. Molecular and Cellular Neurosciences, 82, 76–87. ; Arai, T., Kamagata, K., Uchida, W., Andica, C., Takabayashi, K., Saito, Y., Tuerxun, R., Mahemuti, Z., Morita, Y., Irie, R., Kirino, E., & Aoki, S. (2023). Reduced neurite density index in the prefrontal cortex of adults with autism assessed using neurite orientation dispersion and density imaging. Frontiers in Neurology, 14, 1110883. ; Cetin, I., Tezdig, I., Tarakcioglu, M. C., Kadak, M. T., Demirel, O. F., & Ozer, O. F. (2016). Serum levels of glial fibrillary acidic protein and Nogo‐A in children with autism spectrum disorders. Biomarkers, 21, 614–618. ; Chaliha, D., Albrecht, M., Vaccarezza, M., Takechi, R., Lam, V., Al‐Salami, H., & Mamo, J. (2020). A systematic review of the valproic‐acid‐induced rodent model of autism. Developmental Neuroscience, 42, 12–48. ; Chisholm, K., Lin, A., Abu‐Akel, A., & Wood, S. J. (2015). The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co‐occurrence. Neuroscience and Biobehavioral Reviews, 55, 173–183. ; Chou, L. Y., Chao, Y. M., Peng, Y. C., Lin, H. C., & Wu, Y. L. (2020). Glucosamine enhancement of BDNF expression and animal cognitive function. Molecules, 25, 3667. ; Christensen, J., Gronborg, T. K., Sorensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H., & Vestergaard, M. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309, 1696–1703. ; Clements, B. M., Peterson, C. D., Kitto, K. F., Caye, L. D., Wilcox, G. L., & Fairbanks, C. A. (2023). Biodistribution of agmatine to brain and spinal cord after systemic delivery. The Journal of Pharmacology and Experimental Therapeutics, 387, 328–336. ; Dixit, M. P., Sammeta, S. S., Dhokne, M. D., Mangrulkar, S., Upadhya, M. A., Umekar, M. J., Taksande, B. G., & Kotagale, N. R. (2022). Chronic agmatine treatment prevents olanzapine‐induced obesity and metabolic dysregulation in female rats. Brain Research Bulletin, 191, 69–77. ; Esnafoglu, E., & Irende, I. (2018). Decreased plasma agmatine levels in autistic subjects. Journal of Neural Transmission (Vienna), 125, 735–740. ; Freitas, A. E., Neis, V. B., & Rodrigues, A. L. S. (2016). Agmatine, a potential novel therapeutic strategy for depression. European Neuropsychopharmacology, 26, 1885–1899. ; Gorbatyuk, O. S., Milner, T. A., Wang, G., Regunathan, S., & Reis, D. J. (2001). Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Experimental Neurology, 171, 235–245. ; Guimaraes‐Souza, E. M., Joselevitch, C., Britto, L. R. G., & Chiavegatto, S. (2019). Retinal alterations in a pre‐clinical model of an autism spectrum disorder. Molecular Autism, 10, 19. ; Hassanshahi, A., Janahmadi, M., Razavinasab, M., Ilaghi, M., Kohlmeier, K. A., Hassanshahi, E., & Shabani, M. (2023). Administration of agmatine prior to physical or psychological stress in pregnant mice ameliorates behavioural and cognitive deficits in female offspring. International Journal of Developmental Neuroscience, 83, 442–455. ; Himanshu, Dharmila, Sarkar, D., & Nutan. (2020). A review of behavioral tests to evaluate different types of anxiety and anti‐anxiety effects. Clinical Psychopharmacology and Neuroscience, 18, 341–351. ; Ishikawa, T., Obara, T., Jin, K., Nishigori, H., Miyakoda, K., Suzuka, M., Ikeda‐Sakai, Y., Akazawa, M., Nakasato, N., Yaegashi, N., Kuriyama, S., & Mano, N. (2019). Examination of the prescription of antiepileptic drugs to prenatal and postpartum women in Japan from a health administrative database. Pharmacoepidemiology and Drug Safety, 28, 804–811. ; Jeon, S. J., Kwon, H., Bae, H. J., Gonzales, E. L., Kim, J., Chung, H. J., Kim, D. H., Ryu, J. H., & Shin, C. Y. (2022). Agmatine relieves behavioral impairments in fragile X mice model. Neuropharmacology, 219, 109234. ; Kim, J. W., Seung, H., Kim, K. C., Gonzales, E. L. T., Oh, H. A., Yang, S. M., Ko, M. J., Han, S. H., Banerjee, S., & Shin, C. Y. (2017). Agmatine rescues autistic behaviors in the valproic acid‐induced animal model of autism. Neuropharmacology, 113, 71–81. ; Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S. I., Cheong, J. H., Shin, C. Y., & Ko, K. H. (2011). The critical period of valproate exposure to induce autistic symptoms in Sprague‐Dawley rats. Toxicology Letters, 201, 137–142. ; Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R., & Shin, C. Y. (2014). Pax6‐dependent cortical glutamatergic neuronal differentiation regulates autism‐like behavior in prenatally valproic acid‐exposed rat offspring. Molecular Neurobiology, 49, 512–528. ; Kinney, D. K., Munir, K. M., Crowley, D. J., & Miller, A. M. (2008). Prenatal stress and risk for autism. Neuroscience and Biobehavioral Reviews, 32, 1519–1532. ; Kotagale, N. R., Chopde, C. T., Umekar, M. J., & Taksande, B. G. (2015). Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice. European Journal of Pharmacology, 754, 190–198. ; Kotagale, N. R., Taksande, B. G., & Inamdar, N. N. (2019). Neuroprotective offerings by agmatine. Neurotoxicology, 73, 228–245. ; Kuo, J. R., Lo, C. J., Chio, C. C., Chang, C. P., & Lin, M. T. (2007). Resuscitation from experimental traumatic brain injury by agmatine therapy. Resuscitation, 75, 506–514. ; Leo, A., De Caro, C., Mainardi, P., Tallarico, M., Nesci, V., Marascio, N., Striano, P., Russo, E., Constanti, A., De Sarro, G., & Citraro, R. (2021). Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression. Neuropharmacology, 198, 108782. ; Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. Lancet, 374, 1627–1638. ; Li, L., Li, M., Lu, J., Ge, X., Xie, W., Wang, Z., Li, X., Li, C., Wang, X., Han, Y., Wang, Y., Zhong, L., Xiang, W., Huang, X., Chen, H., & Yao, P. (2018). Prenatal progestin exposure is associated with autism spectrum disorders. Frontiers in Psychiatry, 9, 611. ; Li, X., Lin, J., Hua, Y., Gong, J., Ding, S., Du, Y., Wang, X., Zheng, R., & Xu, H. (2021). Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin D‐mediated pyroptosis. Frontiers in Pharmacology, 12, 627557. ; Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J., & Patterson, P. H. (2012). Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, Behavior, and Immunity, 26, 607–616. ; Mishra, M. K., Kukal, S., Paul, P. R., Bora, S., Singh, A., Kukreti, S., Saso, L., Muthusamy, K., Hasija, Y., & Kukreti, R. (2021). Insights into structural modifications of valproic acid and their pharmacological profile. Molecules, 27, 104. ; Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J., & Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: An approach to assess autistic‐like behavior in mice. Genes, Brain, and Behavior, 3, 287–302. ; Nadeem, A., Ahmad, S. F., Al‐Harbi, N. O., Attia, S. M., Bakheet, S. A., Alsanea, S., Ali, N., Albekairi, T. H., & Alsaleh, N. B. (2021). Aggravation of autism‐like behavior in BTBR T+tf/J mice by environmental pollutant, di‐(2‐ethylhexyl) phthalate: Role of nuclear factor erythroid 2‐related factor 2 and oxidative enzymes in innate immune cells and cerebellum. International Immunopharmacology, 91, 107323. ; Nadeem, A., Ahmad, S. F., El‐Sherbeeny, A. M., Al‐Harbi, N. O., Bakheet, S. A., & Attia, S. M. (2018). Systemic inflammation in asocial BTBR T(+) tf/J mice predisposes them to increased psoriatic inflammation. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 83, 8–17. ; Nicolini, C., & Fahnestock, M. (2018). The valproic acid‐induced rodent model of autism. Experimental Neurology, 299, 217–227. ; Ornoy, A. (2009). Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reproductive Toxicology, 28, 1–10. ; Pu, Y., Ma, L., Shan, J., Wan, X., Hammock, B. D., & Hashimoto, K. (2021). Autism‐like behaviors in male juvenile offspring after maternal glyphosate exposure. Clinical Psychopharmacology and Neuroscience, 19, 554–558. ; Ranger, P., & Ellenbroek, B. A. (2016). Perinatal influences of valproate on brain and behaviour: An animal model for autism. Current Topics in Behavioral Neurosciences, 29, 363–386. ; Romoli, M., Mazzocchetti, P., D'Alonzo, R., Siliquini, S., Rinaldi, V. E., Verrotti, A., Calabresi, P., & Costa, C. (2019). Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Current Neuropharmacology, 17, 926–946. ; Sharawy, M. H., Abdelrahman, R. S., & El‐Kashef, D. H. (2018). Agmatine attenuates rhabdomyolysis‐induced acute kidney injury in rats in a dose dependent manner. Life Sciences, 208, 79–86. ; Shopsin, B. (2013). The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: A pilot study. Acta Neuropsychiatrica, 25, 113–118. ; Taksande, B. G., Chopde, C. T., Umekar, M. J., & Kotagale, N. R. (2015). Agmatine attenuates lipopolysaccharide induced anorexia and sickness behavior in rats. Pharmacology, Biochemistry, and Behavior, 132, 108–114. ; Tatem, K. S., Quinn, J. L., Phadke, A., Yu, Q., Gordish‐Dressman, H., & Nagaraju, K. (2014). Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. Journal of Visualized Experiments, (91), 51785. ; Uzbay, T. I. (2012). The pharmacological importance of agmatine in the brain. Neuroscience and Biobehavioral Reviews, 36, 502–519. ; Vajda, F. J. E., O'Brien, T. J., Graham, J. E., Hitchcock, A. A., Lander, C. M., & Eadie, M. J. (2019). Valproate‐associated foetal malformations—Rates of occurrence, risks in attempted avoidance. Acta Neurologica Scandinavica, 139, 42–48. ; Vinchurney, M. D., Dhokne, M. D., Kotagale, N., Umekar, M. J., & Taksande, B. (2023). Agmatine prevents the manifestation of impulsive burying and depression‐like behaviour in progesterone withdrawn female rats. Hormones and Behavior, 152, 105361. ; Wang, Y., Zhao, S., Liu, X., Zheng, Y., Li, L., & Meng, S. (2018). Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomedicine & Pharmacotherapy, 107, 262–269. ; Wu, D., Wu, F., Lin, R., Meng, Y., Wei, W., Sun, Q., & Jia, L. (2020). Impairment of learning and memory induced by perinatal exposure to BPA is associated with ERalpha‐mediated alterations of synaptic plasticity and PKC/ERK/CREB signaling pathway in offspring rats. Brain Research Bulletin, 161, 43–54. ; Xu, W., Gao, L., Li, T., Shao, A., & Zhang, J. (2018). Neuroprotective role of agmatine in neurological diseases. Current Neuropharmacology, 16, 1296–1305. ; Zahedi, E., Sadr, S. S., Sanaeierad, A., & Roghani, M. (2023). Valproate‐induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1alpha signaling. Metabolic Brain Disease, 38, 2093–2103. ; Zohny, S. M., Habib, M. Z., Mohamad, M. I., Elayat, W. M., Elhossiny, R. M., El‐Salam, M. F. A., Hassan, G. A. M., & Aboul‐Fotouh, S. (2023). Memantine/aripiprazole combination alleviates cognitive dysfunction in valproic acid rat model of autism: Hippocampal CREB/BDNF signaling and glutamate homeostasis. Neurotherapeutics, 20, 464–483.
  • Grant Information: Y20190096 Science and Technology Plan Project of Wenzhou Municipality; 2020KY180 Medical Health Science and Technology Project of Zhejiang Provincial Health Commission
  • Contributed Indexing: Keywords: BDNF; CREB; ERK; agmatine; autism spectrum disorder; valproate
  • Substance Nomenclature: 70J407ZL5Q (Agmatine) ; 0 (Brain-Derived Neurotrophic Factor) ; H0G9379FGK (Calcium Carbonate) ; 614OI1Z5WI (Valproic Acid)
  • Entry Date(s): Date Created: 20240416 Date Completed: 20240417 Latest Revision: 20240422
  • Update Code: 20240423

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -