Zum Hauptinhalt springen

Icariin alleviates renal inflammation and tubulointerstitial fibrosis via Nrf2-mediated attenuation of mitochondrial damage.

Ding, N ; Sun, S ; et al.
In: Cell biochemistry and function, Jg. 42 (2024-04-01), Heft 3, S. e4005
Online academicJournal

Titel:
Icariin alleviates renal inflammation and tubulointerstitial fibrosis via Nrf2-mediated attenuation of mitochondrial damage.
Autor/in / Beteiligte Person: Ding, N ; Sun, S ; Zhou, S ; Lv, Z ; Wang, R
Link:
Zeitschrift: Cell biochemistry and function, Jg. 42 (2024-04-01), Heft 3, S. e4005
Veröffentlichung: Oxford, England : Wiley-Blackwell ; <i>Original Publication</i>: Guildford, Surrey : Butterworth Scientific Ltd., c1983-, 2024
Medientyp: academicJournal
ISSN: 1099-0844 (electronic)
DOI: 10.1002/cbf.4005
Schlagwort:
  • Mice
  • Animals
  • Kidney metabolism
  • Transforming Growth Factor beta1 metabolism
  • NF-E2-Related Factor 2 metabolism
  • Reactive Oxygen Species metabolism
  • Flavonoids pharmacology
  • Fibrosis
  • Inflammation metabolism
  • Ureteral Obstruction metabolism
  • Ureteral Obstruction pathology
  • Renal Insufficiency, Chronic drug therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Cell Biochem Funct] 2024 Apr; Vol. 42 (3), pp. e4005.
  • MeSH Terms: Ureteral Obstruction* / metabolism ; Ureteral Obstruction* / pathology ; Renal Insufficiency, Chronic* / drug therapy ; Mice ; Animals ; Kidney / metabolism ; Transforming Growth Factor beta1 / metabolism ; NF-E2-Related Factor 2 / metabolism ; Reactive Oxygen Species / metabolism ; Flavonoids / pharmacology ; Fibrosis ; Inflammation / metabolism
  • References: Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. 2022;12(1):7‐11. doi:10.1016/j.kisu.2021.11.003. ; Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309‐326. doi:10.1146/annurev-physiol-022516-034227. ; Wang W, Ma B, Xu C, Zhou X. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine. 2020;69:153185. doi:10.1016/j.phymed.2020.153185. ; Hewitson TD, Holt SG, Smith ER. Progression of tubulointerstitial fibrosis and the chronic kidney disease phenotype—role of risk factors and epigenetics. Front Pharmacol. 2017;8:520. doi:10.3389/fphar.2017.00520. ; Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238‐1252. doi:10.1016/S0140-6736(16)32064-5. ; Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23(3):159‐173. doi:10.1038/s41577-022-00760-x. ; Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nature Metabolism. 2023;5(4):546‐562. doi:10.1038/s42255-023-00783-1. ; Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Revi Nephrol. 2016;12(5):267‐280. doi:10.1038/nrneph.2015.214. ; Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 2018;93(3):568‐579. doi:10.1016/j.kint.2017.09.033. ; Ye L, Yu Y, Zhao Y. Icariin‐induced miR‐875‐5p attenuates epithelial‐mesenchymal transition by targeting hedgehog signaling in liver fibrosis. J Gastroenterol Hepatol. 2020;35(3):482‐491. doi:10.1111/jgh.14875. ; Algandaby MM, Breikaa RM, Eid BG, Neamatallah TA, Abdel‐Naim AB, Ashour OM. Icariin protects against thioacetamide‐induced liver fibrosis in rats: implication of anti‐angiogenic and anti‐autophagic properties. Pharmacological Reports. 2017;69(4):616‐624. doi:10.1016/j.pharep.2017.02.016. ; Qi M, He Y, Cheng Y, et al. Icariin ameliorates streptozocin‐induced diabetic nephropathy through suppressing the TLR4/NF‐κB signal pathway. Food Funct. 2021;12(3):1241‐1251. doi:10.1039/d0fo02335c. ; Wu B, Feng J, Yu L, et al. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1‐dependent mitochondrial oxidative damage. Br J Pharmacol. 2018;175(21):4137‐4153. doi:10.1111/bph.14457. ; Yu LM, Dong X, Xu YL, et al. Icariin attenuates excessive alcohol consumption‐induced susceptibility to atrial fibrillation through SIRT3 signaling. Biochimica et Biophysica Acta. 2022;1868(10):166483. doi:10.1016/j.bbadis.2022.166483. ; Qiao C, Ye W, Li S, Wang H, Ding X. Icariin modulates mitochondrial function and apoptosis in high glucose‐induced glomerular podocytes through G protein‐coupled estrogen receptors. Mol Cell Endocrinol. 2018;473:146‐155. doi:10.1016/j.mce.2018.01.014. ; Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145‐1152. doi:10.1038/ki.2009.86. ; Ding X, Zhao H, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2‐induced mitophagy through the Keap1‐Nrf2/HO‐1 axis in diabetic nephropathy. Phytomedicine. 2022;99:154005. doi:10.1016/j.phymed.2022.154005. ; Yu LM, Dong X, Li N, et al. Polydatin attenuates chronic alcohol consumption‐induced cardiomyopathy through a SIRT6‐dependent mechanism. Food Funct. 2022;13(13):7302‐7319. doi:10.1039/d2fo00966h. ; Chung KW, Dhillon P, Huang S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784‐799.e5. doi:10.1016/j.cmet.2019.08.003. ; Li X, Zhang W, Cao Q, et al. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov. 2020;6(1):80. doi:10.1038/s41420-020-00316-9. ; Zheng L, Wu S, Jin H, et al. Molecular mechanisms and therapeutic potential of icariin in the treatment of alzheimer's disease. Phytomedicine. 2023;116:154890. doi:10.1016/j.phymed.2023.154890. ; Zeng Y, Xiong Y, Yang T, et al. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: from effects to molecular mechanisms. Biomed Pharmacother. 2022;147:112642. doi:10.1016/j.biopha.2022.112642. ; Liu Y, Yang H, Xiong J, et al. Icariin as an emerging candidate drug for anticancer treatment: current status and perspective. Biomed Pharmacother. 2023;157:113991. doi:10.1016/j.biopha.2022.113991. ; Du W, Tang Z, Yang F, Liu X, Dong J. Icariin attenuates bleomycin‐induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed Pharmacother. 2021;143:112152. doi:10.1016/j.biopha.2021.112152. ; Zhang L, Wang S, Li Y, Wang Y, Dong C, Xu H. Cardioprotective effect of icariin against myocardial fibrosis and its molecular mechanism in diabetic cardiomyopathy based on network pharmacology: role of ICA in DCM. Phytomedicine. 2021;91:153607. doi:10.1016/j.phymed.2021.153607. ; Chen HA, Chen CM, Guan SS, Chiang CK, Wu CT, Liu SH. The antifibrotic and anti‐inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. Phytomedicine. 2019;59:152917. doi:10.1016/j.phymed.2019.152917. ; Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126. doi:10.1038/s41419-018-1157-x. ; Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit‐Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657‐684. doi:10.1089/ars.2016.6664. ; Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051‐1057. doi:10.1016/j.kint.2017.05.034. ; Wang F, Jia J, Song H, Jia C, Chen C, Ma J. Icariin protects vascular endothelial cells from oxidative stress through inhibiting endoplasmic reticulum stress. J Integ Med. 2019;17(3):205‐212. doi:10.1016/j.joim.2019.01.011. ; Song YH, Cai H, Zhao ZM, et al. Icariin attenuated oxidative stress induced‐cardiac apoptosis by mitochondria protection and ERK activation. Biomed Pharmacother. 2016;83:1089‐1094. doi:10.1016/j.biopha.2016.08.016. ; Zhang C, Cao Z, Lei H, et al. Discovery of a novel small molecule with efficacy in protecting against inflammation in vitro and in vivo by enhancing macrophages activation. Biomed Pharmacother. 2023;165:115273. doi:10.1016/j.biopha.2023.115273. ; Xiong D, Deng Y, Huang B, et al. Icariin attenuates cerebral ischemia‐reperfusion injury through inhibition of inflammatory response mediated by NF‐κB, PPARα and PPARγ in rats. Int Immunopharmacol. 2016;30:157‐162. doi:10.1016/j.intimp.2015.11.035. ; Su B, Ye H, You X, Ni H, Chen X, Li L. Icariin alleviates murine lupus nephritis via inhibiting NF‐κB activation pathway and NLRP3 inflammasome. Life Sci. 2018;208:26‐32. doi:10.1016/j.lfs.2018.07.009. ; Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799. doi:10.15252/embr.201949799. ; Zhu Z, Liang W, Chen Z, et al. Mitoquinone protects podocytes from angiotensin II‐Induced mitochondrial dysfunction and injury via the Keap1‐Nrf2 signaling pathway. Oxid Med Cell Longevity. 2021;2021:1394486. doi:10.1155/2021/1394486. ; Xiao L, Xu X, Zhang F, et al. The mitochondria‐targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297‐311. doi:10.1016/j.redox.2016.12.022. ; Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal. 2010;13(11):1665‐1678. doi:10.1089/ars.2010.3222. ; Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo‐interstitial nephropathy. Nephrol Dial Transplant. 2013;28(8):2038‐2045. doi:10.1093/ndt/gft022. ; Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta. 2017;1863(2):585‐597. doi:10.1016/j.bbadis.2016.11.005. ; Kim HJ, Vaziri ND. Contribution of impaired Nrf2‐Keap1 pathway to oxidative stress and inflammation in chronic renal failure. American J Physiol Renal Physiol. 2010;298(3):F662‐F671. doi:10.1152/ajprenal.00421.2009. ; Lu Y, Sun Y, Liu Z, et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci Transl Med. 2020;12(554):eaba3613. doi:10.1126/scitranslmed.aba3613. ; Guerrero‐Hue M, Rayego‐Mateos S, Vázquez‐Carballo C, et al. Protective role of Nrf2 in renal disease. Antioxidants. 2020;10(1):39. doi:10.3390/antiox10010039. ; Nezu M, Suzuki N, Yamamoto M. Targeting the KEAP1‐NRF2 system to prevent kidney disease progression. Am J Nephrol. 2017;45(6):473‐483. doi:10.1159/000475890. ; Wang K, Zheng X, Pan Z, et al. Icariin prevents extracellular matrix accumulation and ameliorates experimental diabetic kidney disease by inhibiting oxidative stress via GPER mediated p62‐dependent Keap1 degradation and Nrf2 activation. Front Cell Dev Biol. 2020;8:559. doi:10.3389/fcell.2020.00559. ; El‐Shitany NA, Eid BG. Icariin modulates carrageenan‐induced acute inflammation through HO‐1/Nrf2 and NF‐kB signaling pathways. Biomed Pharmacother. 2019;120:109567. doi:10.1016/j.biopha.2019.109567.
  • Grant Information: NO: 202201-075 Shandong First Medical University
  • Contributed Indexing: Keywords: Nrf2 pathway; icariin; mitochondrial dysfunction; oxidative stress; renal tubulointerstitial fibrosis
  • Substance Nomenclature: 0 (Transforming Growth Factor beta1) ; VNM47R2QSQ (icariin) ; 0 (NF-E2-Related Factor 2) ; 0 (Reactive Oxygen Species) ; 0 (Flavonoids)
  • Entry Date(s): Date Created: 20240407 Date Completed: 20240408 Latest Revision: 20240408
  • Update Code: 20240408

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -