Zum Hauptinhalt springen

High-definition turns timing-dependent: Different behavioural consequences during and following cathodal high-definition transcranial direct current stimulation (HD tDCS) in a magnitude classification task.

Schroeder, PA ; Nuerk, HC ; et al.
In: The European journal of neuroscience, Jg. 59 (2024-06-01), Heft 11, S. 2967-2978
Online academicJournal

Titel:
High-definition turns timing-dependent: Different behavioural consequences during and following cathodal high-definition transcranial direct current stimulation (HD tDCS) in a magnitude classification task.
Autor/in / Beteiligte Person: Schroeder, PA ; Nuerk, HC ; Svaldi, J
Link:
Zeitschrift: The European journal of neuroscience, Jg. 59 (2024-06-01), Heft 11, S. 2967-2978
Veröffentlichung: <Feb. 2006-> : Oxford : Wiley-Blackwell ; <i>Original Publication</i>: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-, 2024
Medientyp: academicJournal
ISSN: 1460-9568 (electronic)
DOI: 10.1111/ejn.16321
Schlagwort:
  • Humans
  • Male
  • Female
  • Adult
  • Young Adult
  • Prefrontal Cortex physiology
  • Dorsolateral Prefrontal Cortex physiology
  • Psychomotor Performance physiology
  • Transcranial Direct Current Stimulation methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Eur J Neurosci] 2024 Jun; Vol. 59 (11), pp. 2967-2978. <i>Date of Electronic Publication: </i>2024 Apr 02.
  • MeSH Terms: Transcranial Direct Current Stimulation* / methods ; Humans ; Male ; Female ; Adult ; Young Adult ; Prefrontal Cortex / physiology ; Dorsolateral Prefrontal Cortex / physiology ; Psychomotor Performance / physiology
  • References: Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). Linear mixed‐effects models using Eigen and S4. In R package version 1.1‐7, http://CRAN.R-project.org/package=lme4 [Software]. http://cran.r-project.org/web/packages/lme4/index.html. ; Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M.‐F., & Nitsche, M. A. (2013). Partially non‐linear stimulation intensity‐dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000. https://doi.org/10.1113/jphysiol.2012.249730. ; Brunoni, A. R. A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The International Journal of Neuropsychopharmacology, 14(8), 1133–1145. https://doi.org/10.1017/S1461145710001690. ; Cipora, K., Schroeder, P. A., Soltanlou, M., & Nuerk, H.‐C. (2018). More space, better mathematics: Is space a powerful tool or a cornerstone for understanding arithmetic? In K. Mix & M. Battista (Eds.), Visualizing mathematics. Research in mathematics education (pp. 77–116). Springer. https://doi.org/10.1007/978-3-319-98767-5_4. ; Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132–147. https://doi.org/10.1016/j.pneurobio.2007.11.001. ; Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri‐precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.e1. https://doi.org/10.1016/j.brs.2009.03.005. ; Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://doi.org/10.1037/0096-3445.122.3.371. ; Di Rosa, E., Bardi, L., Umiltà, C., Masina, F., Forgione, M., & Mapelli, D. (2017). Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account. Cortex, 93, 68–78. https://doi.org/10.1016/j.cortex.2017.05.002. ; Farshad, M., Artemenko, C., Cipora, K., Svaldi, J., & Schroeder, P. A. (2024). Regional specificity of cathodal transcranial direct current stimulation effects on spatial–numerical associations: Comparison of four stimulation sites. Journal of Neuroscience Research, 102(2), e25304. https://doi.org/10.1002/jnr.25304. ; Fox, J., & Weisberg, S. (2018). An R companion to applied regression. SAGE Publications. ; Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal‐spatial and visuospatial coding of number‐space interactions. Journal of Experimental Psychology. General, 139(1), 180–190. https://doi.org/10.1037/a0017688. ; Ghasemian‐Shirvan, E., Mosayebi‐Samani, M., Farnad, L., Kuo, M.‐F., Meesen, R. L. J., & Nitsche, M. A. (2022). Age‐dependent non‐linear neuroplastic effects of cathodal tDCS in the elderly population: A titration study. Brain Stimulation, 15(2), 296–305. https://doi.org/10.1016/j.brs.2022.01.011. ; Guo, H., Zhang, Z., Da, S., Sheng, X., & Zhang, X. (2018). High‐definition transcranial direct current stimulation (HD‐tDCS) of left dorsolateral prefrontal cortex affects performance in balloon analogue risk task (BART). Brain and Behavior: a Cognitive Neuroscience Perspective, 8(2), e00884. https://doi.org/10.1002/brb3.884. ; Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. (2016). Effects of high‐definition and conventional tDCS on response inhibition. Brain Stimulation, 9(5), 720–729. https://doi.org/10.1016/j.brs.2016.04.015. ; Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. https://doi.org/10.1038/nrn1684. ; Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta‐analytical review. Experimental Brain Research, 216(1), 1–10. https://doi.org/10.1007/s00221-011-2891-9. ; Jamil, A., Batsikadze, G., Kuo, H.‐I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after‐effects induced by transcranial direct current stimulation. The Journal of Physiology, 595(4), 1273–1288. https://doi.org/10.1113/JP272738. ; Jeffreys, H. (1961). Theory of probability. Oxford University Press. ; Jung, J., Ralph, M. A. L., & Jackson, R. L. (2022). Subregions of DLPFC display graded yet distinct structural and functional connectivity. Journal of Neuroscience, 42(15), 3241–3252. https://doi.org/10.1523/JNEUROSCI.1216-21.2022. ; Korai, S. A., Ranieri, F., Di Lazzaro, V., Papa, M., & Cirillo, G. (2021). Neurobiological after‐effects of low intensity transcranial electric stimulation of the human nervous system: From basic mechanisms to Metaplasticity. Frontiers in Neurology, 12, 587771. https://doi.org/10.3389/fneur.2021.587771. ; Kuo, H.‐I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.‐F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high‐definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. https://doi.org/10.1016/j.brs.2012.09.010. ; Lacadie, C. M., Fulbright, R. K., Constable, R. T., & Papademetris, X. (2008). More accurate Talairach coordinates for NeuroImaging using nonlinear registration. NeuroImage, 42(2), 717–725. https://doi.org/10.1016/j.neuroimage.2008.04.240.More. ; Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013. ; Liu, A., Vöröslakos, M., Kronberg, G., Henin, S., Krause, M. R., Huang, Y., Opitz, A., Mehta, A., Pack, C. C., Krekelberg, B., Berényi, A., Parra, L. C., Melloni, L., Devinsky, O., & Buzsáki, G. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 9(1), 5092. https://doi.org/10.1038/s41467-018-07233-7. ; Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode‐distance dependent after‐effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171. https://doi.org/10.1016/j.clinph.2010.04.033. ; Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. https://doi.org/10.1038/2151519a0. ; Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x. ; Nuerk, H.‐C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology, 57(5), 835–863. https://doi.org/10.1080/02724980343000512. ; Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4. ; Ostrowski, J., Svaldi, J., & Schroeder, P. A. (2022). More focal, less heterogeneous? Multi‐level meta‐analysis of cathodal high‐definition transcranial direct current stimulation effects on language and cognition. Journal of Neural Transmission (Vienna, Austria: 1996), 129(7), 861–878. https://doi.org/10.1007/s00702-022-02507-3. ; Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017. ; Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non‐invasive brain stimulation. Nature Neuroscience, 21, 174–187. https://doi.org/10.1038/s41593-017-0054-4. ; Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10(1), 15–35. https://doi.org/10.1006/nimg.1999.0441. ; Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416–442. https://doi.org/10.1037/0033-2909.132.3.416. ; R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. [Software]. https://www.r-project.org/. ; Schroeder, P. A., Artemenko, C., Cipora, K., & Svaldi, J. (2020). Regional specificity of cathodal transcranial direct current stimulation (tDCS) effects on spatial‐numerical associations: Comparison of four stimulation sites. Journal of Neuroscience Research, 98(4), 655–667. https://doi.org/10.1002/jnr.24559. ; Schroeder, P. A., Nuerk, H.‐C., & Plewnia, C. (2017a). Prefrontal neuromodulation reverses spatial associations of non‐numerical sequences, but not numbers. Biological Psychology, 128, 39–49. https://doi.org/10.1016/j.biopsycho.2017.07.008. ; Schroeder, P. A., Nuerk, H.‐C., & Plewnia, C. (2017b). Switching between multiple codes of SNARC‐like associations: Two conceptual replication attempts with anodal tDCS in sham‐controlled cross‐over Design. Frontiers in Neuroscience, 11, 654. https://doi.org/10.3389/fnins.2017.00654. ; Schroeder, P. A., Nuerk, H.‐C., & Plewnia, C. (2018). Reduction of implicit cognitive bias with cathodal tDCS to the left prefrontal cortex. Cognitive, Affective, & Behavioral Neuroscience, 18(2), 263–272. https://doi.org/10.3758/s13415-018-0567-7. ; Schroeder, P. A., Pfister, R., Kunde, W., Nuerk, H.‐C., & Plewnia, C. (2016). Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. Journal of Cognitive Neuroscience, 28(11), 1737–1748. https://doi.org/10.1162/jocn. ; Schroeder, P. A., Seewald, A., & Svaldi, J. (2022). Spotlight on the left frontal cortex: No evidence for response inhibition from cathodal high‐definition transcranial direct current stimulation over left inferior frontal gyrus or left dorsolateral prefrontal cortex. Journal of Cognitive Neuroscience, 34(6), 1090–1102. https://doi.org/10.1162/jocn_a_01849. ; Soleimani, G., Saviz, M., Bikson, M., Towhidkhah, F., Kuplicki, R., Paulus, M. P., & Ekhtiari, H. (2021). Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Scientific Reports, 11(1), 1271. https://doi.org/10.1038/s41598-020-80279-0. ; Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? IEEE EMBS, 2015, 222‐225. ; Tyler, L. K., Marslen‐Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., Papoutsi, M., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(2), 415–431. https://doi.org/10.1093/brain/awq369. ; Vimolratana, O., Lackmy‐Vallee, A., Aneksan, B., Hiengkaew, V., & Klomjai, W. (2023). Non‐linear dose response effect of cathodal transcranial direct current stimulation on muscle strength in young healthy adults: A randomized controlled study. BMC Sports Science, Medicine and Rehabilitation, 15(1), 10. https://doi.org/10.1186/s13102-023-00621-7. ; Wolkenstein, L., Zeiller, M., Kanske, P., & Plewnia, C. (2014). Induction of a depression‐like negativity bias by cathodal transcranial direct current stimulation. Cortex, 59, 103–112. https://doi.org/10.1016/j.cortex.2014.07.011. ; Zhang, R., Geng, X., & Lee, T. M. C. (2017). Large‐scale functional neural network correlates of response inhibition: An fMRI meta‐analysis. Brain Structure and Function, 222(9), 3973–3990. https://doi.org/10.1007/s00429-017-1443-x.
  • Grant Information: SCHR1628/1-1 Deutsche Forschungsgemeinschaft
  • Contributed Indexing: Keywords: DLPFC; HD tDCS; IFG; SNARC effect; cathodal tDCS; prefrontal cortex
  • Entry Date(s): Date Created: 20240403 Date Completed: 20240604 Latest Revision: 20240604
  • Update Code: 20240604

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -