Zum Hauptinhalt springen

Recovery of aluminum oxide and iron oxide from aluminum electrolysis iron-rich cover material and preparation of aluminum fluoride.

Lan, J ; Yan, H ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 18, S. 27388-27402
Online academicJournal

Titel:
Recovery of aluminum oxide and iron oxide from aluminum electrolysis iron-rich cover material and preparation of aluminum fluoride.
Autor/in / Beteiligte Person: Lan, J ; Yan, H ; Liu, Z ; Ma, W
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 18, S. 27388-27402
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-32877-y
Schlagwort:
  • Iron chemistry
  • Aluminum Compounds chemistry
  • Recycling
  • Ferric Compounds chemistry
  • Electrolysis
  • Aluminum chemistry
  • Fluorides chemistry
  • Aluminum Oxide chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Apr; Vol. 31 (18), pp. 27388-27402. <i>Date of Electronic Publication: </i>2024 Mar 21.
  • MeSH Terms: Ferric Compounds* / chemistry ; Electrolysis* ; Aluminum* / chemistry ; Fluorides* / chemistry ; Aluminum Oxide* / chemistry ; Iron / chemistry ; Aluminum Compounds / chemistry ; Recycling
  • References: Cai W, Xia H, Zhang Q, Jiang G, Xu Y (2023) Defluorination of waste cathodic carbon through steam under conventional high-temperature roasting. JOM 75:400–406. https://doi.org/10.1007/s11837-022-05544-1. (PMID: 10.1007/s11837-022-05544-1) ; Falagan C, Yusta I, Sanchez-Espana J, Johnson DB (2017) Biologically-induced precipitation of aluminium in synthetic acid mine water. Miner Eng 106:79–85. https://doi.org/10.1016/j.mineng.2016.09.028. (PMID: 10.1016/j.mineng.2016.09.028) ; Gao Q, Guo Q, Li Y, Ren B, Fu M, Li H, Tian D, Ding M (2021) Innovative technology for defluorination of secondary aluminum dross by alkali leaching. Miner Eng 172:107134. https://doi.org/10.1016/j.mineng.2021.107134. (PMID: 10.1016/j.mineng.2021.107134) ; Groutso T, Taylor M, Hudson AK (2009) Aspects of crust formation from today’s anode cover material. Light Metals, pp 405–410. ; Haverkamp RG (2012) An XPS study of the fluorination of carbon anodes in molten NaF-AlF3-CaF2. J Mater Sci 47:1262–1267. https://doi.org/10.1007/s10853-011-5772-5. (PMID: 10.1007/s10853-011-5772-5) ; Henning K, Mogens M (1992) A process for recovering aluminium and fluorine from fluorine containing waste materials. U.S. Patent US05558847A. ; Holywell G, Breault R (2013) An overview of useful methods to treat, recover, or recycle spent potlining. JOM 65:1441–1451. https://doi.org/10.1007/s11837-013-0769-y. (PMID: 10.1007/s11837-013-0769-y) ; Li N, Xie G, Wang Z, Hou Y, Li R (2014) Recycle of spent potlining with low carbon grade by floatation. Adv Mater Res 881–883:1660–1664. https://doi.org/10.4028/www.scientific.net/AMR.881-883.1660. (PMID: 10.4028/www.scientific.net/AMR.881-883.1660) ; Li B, Zhou J, Yao Z, Peng Q, Liu M, Li X, Liu W (2021) Advances in the safe disposal and comprehensive utilization of spent carbon anode from aluminum electrolysis: prospects for extraction and application of carbon resources from hazardous waste. Front Energy Res 9:779476. https://doi.org/10.3389/fenrg.2021.779476. (PMID: 10.3389/fenrg.2021.779476) ; Lisbona DF, Steel KA (2008) Recovery of fluoride values from spent pot-lining: precipitation of an aluminium hydroxyfluoride hydrate product. Sep Purif Technol 61:182–192. https://doi.org/10.1016/j.seppur.2007.10.012. (PMID: 10.1016/j.seppur.2007.10.012) ; Lisbona DF, Somerfield C, Steel KM (2012) Treatment of spent pot-lining with aluminum anodizing wastewaters: selective precipitation of aluminum and fluoride as an aluminum hydroxyfluoride hydrate product. Ind Eng Chem Res 51:12712–12722. https://doi.org/10.1021/ie3013506. (PMID: 10.1021/ie3013506) ; Lisbona DF, Somerfield C, Steel KM (2013) Leaching of spent pot-lining with aluminium nitrate and nitric acid: effect of reaction conditions and thermodynamic modelling of solution speciation. Hydrometallurgy 134:132–143. https://doi.org/10.1016/j.hydromet.2013.02.011. (PMID: 10.1016/j.hydromet.2013.02.011) ; Nie Y, Guo X, Guo Z, Tang J, Xiao X, Xin L (2020) Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution. Hydrometallurgy 194:105319. https://doi.org/10.1016/j.hydromet.2020.105319. (PMID: 10.1016/j.hydromet.2020.105319) ; Ntuk U, Steel K (2016) Metastable zone width and nucleation threshold of aluminium hydroxyfluoride hydrate. Cryst Res Technol 51:265–275. https://doi.org/10.1002/crat.201500294. (PMID: 10.1002/crat.201500294) ; Ntuk U, Tait S, White ET, Steel KM (2015) The precipitation and solubility of aluminium hydroxyfluoride hydrate between 30 and 70 ℃. Hydrometallurgy 155:79–87. https://doi.org/10.1016/j.hydromet.2015.04.010. (PMID: 10.1016/j.hydromet.2015.04.010) ; Sathiyanarayanan S, Devi S, Venkatachari G (2006) Corrosion protection of stainless steel by electropolymerised pani coating. Prog Org Coat 56:114–119. https://doi.org/10.1016/j.porgcoat.2006.01.003. (PMID: 10.1016/j.porgcoat.2006.01.003) ; Shaohua W, Wenju T, Wang H, Hui G, Liyu C, Jiaxin Y, Yanchen Z, Jingui H, Youjian Y, Zhaowen W (2022) Hydrometallurgical stepwise separation of alumina and recovery of aluminum fluoride from waste anode cover material of aluminum electrolysis. Miner Eng 186:107740. https://doi.org/10.1016/j.mineng.2022.107740. (PMID: 10.1016/j.mineng.2022.107740) ; Shi Z-n, Li W, Hu X-w, Ren B-j, Gao B-l, Wang Z-w (2012) Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching. Trans Nonferrous Met Soc China 22:222–227. https://doi.org/10.1016/S1003-6326(11)61164-3. (PMID: 10.1016/S1003-6326(11)61164-3) ; Tarcy GP, Kvande H, Tabereaux A (2011) Advancing the industrial aluminum process: 20th century breakthrough inventions and developments. JOM 63:104–111. https://doi.org/10.1007/s11837-011-0120-4. (PMID: 10.1007/s11837-011-0120-4) ; Wang LS, Wang CM, Yu Y, Huang XW, Long ZQ, Hou YK, Cui DL (2012) Recovery of fluorine from bastnasite as synthetic cryolite by-product. J Hazard Mater 209:77–83. https://doi.org/10.1016/j.jhazmat.2011.12.069. (PMID: 10.1016/j.jhazmat.2011.12.069) ; Wang Y, Peng J, Di Y (2018) Separation and recycling of spent carbon cathode blocks in the aluminum industry by the vacuum distillation process. JOM 70:1877–1882. https://doi.org/10.1007/s11837-018-2858-4. (PMID: 10.1007/s11837-018-2858-4) ; Wang C, Mao S, Li L (2023a) Study on ultrasonic leaching and recovery of fluoride from spent cathode carbon of aluminum electrolysis. RSC Adv 13:16300–16310. https://doi.org/10.1039/d3ra02088f. (PMID: 10.1039/d3ra02088f) ; Wang X, Guan S, Liu J, Ding S, Zhang Q (2023b) Determination of fluorine content in coal by alkali melt—fluoride lon selective electrode method. Chin J Inorg Anal Chem 13:111–116. https://doi.org/10.3969/j.issn.2095-1035.2023.02.001. (PMID: 10.3969/j.issn.2095-1035.2023.02.001) ; Wu S, Tao W, Ge H, Yang J, Chen L, He J, Yang Y, Wang Z (2023) Extraction and recycling of fluoride-containing phase from spent bottom sedimentation of aluminum smelting cell by leaching in Al3+solution media. Sep Purif Technol 306:122797. https://doi.org/10.1016/j.seppur.2022.122797. (PMID: 10.1016/j.seppur.2022.122797) ; Xu Y, Yuan S (2015) Corrosion mechanism of anode steel claw in high temperature cryolite molten salt and corrosion resistance technology. Mater Res Innovations 19:S260–S263. https://doi.org/10.1179/1432891715Z.0000000001568. (PMID: 10.1179/1432891715Z.0000000001568) ; Yang K, Li J, Huang W, Zhu C, Tian Z, Zhu X, Fang Z (2022) A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method. J Environ Manage 318:115503. https://doi.org/10.1016/j.jenvman.2022.115503. ; Yi-fan LI, Hao C, Pei-yu G, Kai Y, Zhong-liang T, Yan-qing LAI (2022) An environmentally benign and sustainable process for carbon recovery and efficient defluorination of spent carbon cathode. Trans Nonferrous Met Soc China 32:3810–3821. https://doi.org/10.1016/s1003-6326(22)66060-6. (PMID: 10.1016/s1003-6326(22)66060-6) ; Yuan J, Xiao J, Li F, Wang B, Yao Z, Yu B, Zhang L (2018a) Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC. Ultrason Sonochem 41:608–618. https://doi.org/10.1016/j.ultsonch.2017.10.027. (PMID: 10.1016/j.ultsonch.2017.10.027) ; Yuan J, Xiao J, Tian Z, Yang K, Yao Z (2018b) Optimization of spent cathode carbon purification process under ultrasonic action using Taguchi method. Ind Eng Chem Res 57:7700–7710. https://doi.org/10.1021/acs.iecr.7b05351. (PMID: 10.1021/acs.iecr.7b05351) ; Zhou Y, Li C, Chai D, Qiu S, Zhan Y, Wang Y, Liu Z (2015) Discussion on properties of anode overlay in aluminum reduction. Light Metals 9:32–35. https://doi.org/10.13662/j.cnki.qjs.2015.09.008. (PMID: 10.13662/j.cnki.qjs.2015.09.008)
  • Grant Information: 52064030 Nation Natural Science Foundation of China; YNQR-CYRC-2018-013 Yunnan industrial talent project; grant NO. 202202AG050011and 202202AG050007 Yunnan Major Scientific and Technological Projects
  • Contributed Indexing: Keywords: Aluminum hazardous waste; Aluminum hydroxide fluoride hydrate; Aluminum sulfate solution leaching; Calcination; Iron-rich cover material; Recycle aluminum fluoride
  • Substance Nomenclature: 0 (Ferric Compounds) ; CPD4NFA903 (Aluminum) ; Q80VPU408O (Fluorides) ; LMI26O6933 (Aluminum Oxide) ; Z77H3IKW94 (aluminum fluoride) ; E1UOL152H7 (Iron) ; 0 (Aluminum Compounds) ; 1K09F3G675 (ferric oxide)
  • Entry Date(s): Date Created: 20240321 Date Completed: 20240426 Latest Revision: 20240502
  • Update Code: 20240503

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -