Zum Hauptinhalt springen

Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport.

Mukhopadhyay, AG ; Toropova, K ; et al.
In: The EMBO journal, Jg. 43 (2024-04-01), Heft 7, S. 1257-1272
Online academicJournal

Titel:
Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport.
Autor/in / Beteiligte Person: Mukhopadhyay, AG ; Toropova, K ; Daly, L ; Wells, JN ; Vuolo, L ; Mladenov, M ; Seda, M ; Jenkins, D ; Stephens, DJ ; Roberts, AJ
Link:
Zeitschrift: The EMBO journal, Jg. 43 (2024-04-01), Heft 7, S. 1257-1272
Veröffentlichung: 2024- : [London] : Nature Publishing Group ; <i>Original Publication</i>: Eynsham, Oxford, England : Published for the European Molecular Biology Organization by IRL Press, [c1982-, 2024
Medientyp: academicJournal
ISSN: 1460-2075 (electronic)
DOI: 10.1038/s44318-024-00060-1
Schlagwort:
  • Cryoelectron Microscopy
  • Biological Transport
  • Flagella metabolism
  • Dyneins metabolism
  • Cilia metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [EMBO J] 2024 Apr; Vol. 43 (7), pp. 1257-1272. <i>Date of Electronic Publication: </i>2024 Mar 07.
  • MeSH Terms: Dyneins* / metabolism ; Cilia* / metabolism ; Cryoelectron Microscopy ; Biological Transport ; Flagella / metabolism
  • References: Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367. (PMID: 22505256332259510.1107/S0907444912001308) ; Ansar M, Ullah F, Paracha SA, Adams DJ, Lai A, Pais L, Iwaszkiewicz J, Millan F, Sarwar MT, Agha Z et al (2019) Bi-allelic variants in DYNC1I2 cause syndromic microcephaly with intellectual disability, cerebral malformations, and dysmorphic facial features. Am J Hum Genet 104:1073–1087. (PMID: 31079899655690810.1016/j.ajhg.2019.04.002) ; Asante D, Maccarthy-Morrogh L, Townley AK, Weiss MA, Katayama K, Palmer KJ, Suzuki H, Westlake CJ, Stephens DJ (2013) A role for the Golgi matrix protein giantin in ciliogenesis through control of the localization of dynein-2. J Cell Sci 126:5189–5197. (PMID: 240464483828591) ; Asante D, Stevenson NL, Stephens DJ (2014) Subunit composition of the human cytoplasmic dynein-2 complex. J Cell Sci 127:4774–4787. (PMID: 252057654215718) ; Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA et al (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341:1009–1012. (PMID: 23990561435990210.1126/science.1240985) ; Blisnick T, Buisson J, Absalon S, Marie A, Cayet N, Bastin P (2014) The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. Mol Biol Cell 25:2620–2633. (PMID: 24989795414825110.1091/mbc.e14-05-0961) ; Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM (2022) Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 221:e202109014. (PMID: 35006274875400210.1083/jcb.202109014) ; Chaaban S, Carter AP (2022) Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature 610:212–216. (PMID: 3607116010.1038/s41586-022-05186-y) ; Chen Y, Jiang J (2013) Decoding the phosphorylation code in Hedgehog signal transduction. Cell Res 23:186–200. (PMID: 23337587356782710.1038/cr.2013.10) ; Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. (PMID: 23287718379541110.1126/science.1231143) ; Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530. (PMID: 29872003609648610.1107/S2059798318002425) ; Croll TI, Read RJ (2021) Adaptive Cartesian and torsional restraints for interactive model rebuilding. Acta Crystallogr D Struct Biol 77:438–446. (PMID: 33825704802587910.1107/S2059798321001145) ; De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C, Carvalho AX, Gassmann R, Abreu CMC, Dantas TJ (2022) WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol 221:e202010178. (PMID: 3473903310.1083/jcb.202010178) ; Eguether T, Cordelieres FP, Pazour GJ (2018) Intraflagellar transport is deeply integrated in hedgehog signaling. Mol Biol Cell 29:1178–1189. (PMID: 29540531593506810.1091/mbc.E17-10-0600) ; Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501. (PMID: 20383002285231310.1107/S0907444910007493) ; Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi K-I, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R et al (2012) The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199:151–167. (PMID: 23027906346152110.1083/jcb.201206068) ; Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, et al (2021) Protein complex prediction with AlphaFold-Multimer. Preprint at https://doi.org/10.1101/2021.10.04.463034. ; Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, Lalau G, Bouvagnet P (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68:1030–1035. (PMID: 11231901127562110.1086/319511) ; Hamada Y, Tsurumi Y, Nozaki S, Katoh Y, Nakayama K (2018) Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking. Mol Biol Cell 29:1628–1639. (PMID: 29742051608065210.1091/mbc.E18-03-0173) ; Hesketh SJ, Mukhopadhyay AG, Nakamura D, Toropova K, Roberts AJ (2022) IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 185:4971–4985.e16. (PMID: 3646250510.1016/j.cell.2022.11.010) ; Higashida M, Niwa S (2022) Dynein intermediate chains DYCI-1 and WDR-60 have specific functions in Caenorhabditis elegans. Genes Cells 28:97–110. (PMID: 3646178210.1111/gtc.12996) ; Hiyamizu S, Qiu H, Tsurumi Y, Hamada Y, Katoh Y, Nakayama K (2023a) Dynein-2-driven intraciliary retrograde trafficking indirectly requires multiple interactions of IFT54 in the IFT-B complex with the dynein-2 complex. Biol Open 12:bio059976. (PMID: 373096051032071510.1242/bio.059976) ; Hiyamizu S, Qiu H, Vuolo L, Stevenson NL, Shak C, Heesom KJ, Hamada Y, Tsurumi Y, Chiba S, Katoh Y et al (2023b) Multiple interactions of the dynein-2 complex with the IFT-B complex are required for effective intraflagellar transport. J Cell Sci 136:jcs260462. (PMID: 366327791011042110.1242/jcs.260462) ; Huber C, Wu S, Kim AS, Sigaudy S, Sarukhanov A, Serre V, Baujat G, Le Quan Sang K-H, Rimoin DL, Cohn DH et al (2013) WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am J Hum Genet 93:926–931. (PMID: 24183449382411210.1016/j.ajhg.2013.10.007) ; Jakobi AJ, Wilmanns M, Sachse C (2017) Model-based local density sharpening of cryo-EM maps. Elife 6:e27131. (PMID: 29058676567975810.7554/eLife.27131) ; Jensen VL, Lambacher NJ, Li C, Mohan S, Williams CL, Inglis PN, Yoder BK, Blacque OE, Leroux MR (2018) Role for intraflagellar transport in building a functional transition zone. EMBO Rep 19:e45862. (PMID: 30429209628079410.15252/embr.201845862) ; Jordan MA, Diener DR, Stepanek L, Pigino G (2018) The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat Cell Biol 20:1250–1255. (PMID: 3032318710.1038/s41556-018-0213-1) ; Jordan MA, Pigino G (2021) The structural basis of intraflagellar transport at a glance. J Cell Sci 134:jcs247163. (PMID: 3413743910.1242/jcs.247163) ; Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. (PMID: 34265844837160510.1038/s41586-021-03819-2) ; Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132. (PMID: 20124692281566510.1107/S0907444909047337) ; Karki S, Holzbaur EL (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J Biol Chem 270:28806–28811. (PMID: 749940410.1074/jbc.270.48.28806) ; Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ (2012) IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell 22:940–951. (PMID: 22595669336663310.1016/j.devcel.2012.04.009) ; King SM (2016) Axonemal dynein arms. Cold Spring Harb Perspect Biol 8:a028100. (PMID: 27527589508852510.1101/cshperspect.a028100) ; Kobayashi T, Ishida Y, Hirano T, Katoh Y, Nakayama K (2021) Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol Biol Cell 32:45–56. (PMID: 33175651809881810.1091/mbc.E20-08-0556) ; Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB (2016) Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 129:2106–2119. (PMID: 270685365506485) ; Lacey SE, Foster HE, Pigino G (2023) The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nat Struct Mol Biol 30:584–593. (PMID: 365933131019185210.1038/s41594-022-00905-5) ; Liew GM, Ye F, Nager AR, Murphy JP, Lee JS, Aguiar M, Breslow DK, Gygi SP, Nachury MV (2014) The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev Cell 31:265–278. (PMID: 25443296425562910.1016/j.devcel.2014.09.004) ; Lo KW, Naisbitt S, Fan JS, Sheng M, Zhang M (2001) The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 276:14059–14066. (PMID: 1114820910.1074/jbc.M010320200) ; Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK (2020) SuperPlots: communicating reproducibility and variability in cell biology. J Cell Biol 219:e202001064. (PMID: 32346721726531910.1083/jcb.202001064) ; Ma S, Triviños-Lagos L, Gräf R, Chisholm RL (1999) Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol 147:1261–1274. (PMID: 10601339216808510.1083/jcb.147.6.1261) ; Mangeol P, Prevo B, Peterman EJG (2016) KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol Biol Cell 27:1948–1957. (PMID: 27099372490772810.1091/mbc.e15-06-0404) ; McInerney-Leo AM, Schmidts M, Cortés CR, Leo PJ, Gener B, Courtney AD, Gardiner B, Harris JA, Lu Y, Marshall M et al (2013) Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am J Hum Genet 93:515–523. (PMID: 23910462376992210.1016/j.ajhg.2013.06.022) ; McKenney RJ, Weil SJ, Scherer J, Vallee RB (2011) Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 286:39615–39622. (PMID: 21911489323478410.1074/jbc.M111.289017) ; Merrill AE, Merriman B, Farrington-Rock C, Camacho N, Sebald ET, Funari VA, Schibler MJ, Firestein MH, Cohn ZA, Priore MA et al (2009) Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 84:542–549. (PMID: 19361615266799310.1016/j.ajhg.2009.03.015) ; Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. (PMID: 35637307918428110.1038/s41592-022-01488-1) ; Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK (2010) TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 24:2180–2193. (PMID: 20889716294777010.1101/gad.1966210) ; Nakayama K, Katoh Y (2020) Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 55:179–196. (PMID: 3245646010.1080/10409238.2020.1768206) ; Patel-King RS, Gilberti RM, Hom EFY, King SM (2013) WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 24:2668–2677. (PMID: 23864713375691910.1091/mbc.e13-05-0266) ; Pazour GJ, Dickert BL, Witman GB (1999) The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144:473–481. (PMID: 9971742213291710.1083/jcb.144.3.473) ; Perretta-Tejedor N, Freke G, Seda M, Long DA, Jenkins D (2020) Generating mutant renal cell lines using CRISPR technologies. Methods Mol Biol 2067:323–340. (PMID: 31701460970319910.1007/978-1-4939-9841-8_20) ; Petriman NA, Loureiro-López M, Taschner M, Zacharia NK, Georgieva MM, Boegholm N, Wang J, Mourão A, Russell RB, Andersen JS et al (2022) Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J 41:e112440. (PMID: 36354106975347310.15252/embj.2022112440) ; Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. (PMID: 1526425410.1002/jcc.20084) ; Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. (PMID: 3288110110.1002/pro.3943) ; Porter ME, Bower R, Knott JA, Byrd P, Dentler W (1999) Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10:693–712. (PMID: 100698122519610.1091/mbc.10.3.693) ; Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. (PMID: 2816547310.1038/nmeth.4169) ; Reck-Peterson SL, Redwine WB, Vale RD, Carter AP (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19:382–398. (PMID: 29662141645727010.1038/s41580-018-0004-3) ; Roberts AJ (2018) Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 46:967–982. (PMID: 30065109610345710.1042/BST20170568) ; Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726. (PMID: 24064538397288010.1038/nrm3667) ; Rompolas P, Pedersen LB, Patel-King RS, King SM (2007) Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci 120:3653–3665. (PMID: 1789536410.1242/jcs.012773) ; Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. (PMID: 2274377210.1038/nmeth.2019) ; Schmidts M, Vodopiutz J, Christou-Savina S, Cortés CR, McInerney-Leo AM, Emes RD, Arts HH, Tüysüz B, D’Silva J, Leo PJ et al (2013) Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 93:932–944. (PMID: 24183451382411310.1016/j.ajhg.2013.10.003) ; Shak C, Vuolo L, Uddin B, Katoh Y, Brown T, Mukhopadhyay AG, Heesom K, Roberts AJ, Stevenson N, Nakayama K et al (2023) Disease-associated mutations in WDR34 lead to diverse impacts on the assembly and function of dynein-2. J Cell Sci 136:jcs260073. (PMID: 3626859110.1242/jcs.260073) ; Signor D, Wedaman KP, Orozco JT, Dwyer ND, Bargmann CI, Rose LS, Scholey JM (1999) Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147:519–530. (PMID: 10545497215119310.1083/jcb.147.3.519) ; Susalka SJ, Nikulina K, Salata MW, Vaughan PS, King SM, Vaughan KT, Pfister KK (2002) The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain. J Biol Chem 277:32939–32946. (PMID: 1207715210.1074/jbc.M205510200) ; Taschner M, Lorentzen A, Mourão A, Collins T, Freke GM, Moulding D, Basquin J, Jenkins D, Lorentzen E (2018) Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. Elife 7:e33067. (PMID: 29658880593179610.7554/eLife.33067) ; Taschner M, Lorentzen E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8:a028092. (PMID: 27352625504669210.1101/cshperspect.a028092) ; Toropova K, Mladenov M, Roberts AJ (2017) Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat Struct Mol Biol 24:461–468. (PMID: 28394326542031310.1038/nsmb.3391) ; Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ (2019) Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 26:823–829. (PMID: 31451806677479410.1038/s41594-019-0286-y) ; Tsurumi Y, Hamada Y, Katoh Y, Nakayama K (2019) Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking. Mol Biol Cell 30:658–670. (PMID: 30649997658969510.1091/mbc.E18-10-0678) ; Tynan SH, Gee MA, Vallee RB (2000) Distinct but overlapping sites within the cytoplasmic dynein heavy chain for dimerization and for intermediate chain and light intermediate chain binding. J Biol Chem 275:32769–32774. (PMID: 1089322310.1074/jbc.M001537200) ; van den Hoek H, Klena N, Jordan MA, Alvarez Viar G, Righetto RD, Schaffer M, Erdmann PS, Wan W, Geimer S, Plitzko JM et al (2022) In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377:543–548. (PMID: 3590115910.1126/science.abm6704) ; Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025. (PMID: 10.1107/S0021889897006766) ; Vaughan KT, Vallee RB (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol 131:1507–1516. (PMID: 852260710.1083/jcb.131.6.1507) ; Vuolo L, Stevenson NL, Heesom KJ, Stephens DJ (2018) Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. Elife 7:e39655. (PMID: 30320547621182710.7554/eLife.39655) ; Vuolo L, Stevenson NL, Mukhopadhyay AG, Roberts AJ, Stephens DJ (2020) Cytoplasmic dynein-2 at a glance. J Cell Sci 133:jcs240614. (PMID: 3222958010.1242/jcs.240614) ; Walton T, Gui M, Velkova S, Fassad MR, Hirst RA, Haarman E, O’Callaghan C, Bottier M, Burgoyne T, Mitchison HM et al (2023) Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature 618:625–633. (PMID: 372586791026698010.1038/s41586-023-06140-2) ; Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. (PMID: 29788355603084810.1093/nar/gky427) ; Webb S, Mukhopadhyay AG, Roberts AJ (2020) Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 107:82–90. (PMID: 32684327756170610.1016/j.semcdb.2020.05.021) ; Williams JC, Xie H, Hendrickson WA (2005) Crystal structure of dynein light chain TcTex-1. J Biol Chem 280:21981–21986. (PMID: 1570163210.1074/jbc.M414643200) ; Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M, Diener D, Pigino G, Lechtreck K (2021) In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J Cell Sci 134:jcs259010. (PMID: 34415027848764410.1242/jcs.259010) ; Wingfield JL, Mengoni I, Bomberger H, Jiang Y-Y, Walsh JD, Brown JM, Picariello T, Cochran DA, Zhu B, Pan J et al (2017) IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. Elife 6:e26609. (PMID: 28562242545126210.7554/eLife.26609) ; Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242. (PMID: 21460441306973810.1107/S0907444910045749) ; Wu C, Li J, Peterson A, Tao K, Wang B (2017) Loss of dynein-2 intermediate chain Wdr34 results in defects in retrograde ciliary protein trafficking and Hedgehog signaling in the mouse. Hum Mol Genet 26:2386–2397. (PMID: 28379358607519910.1093/hmg/ddx127) ; Yariv B, Yariv E, Kessel A, Masrati G, Chorin AB, Martz E, Mayrose I, Pupko T, Ben-Tal N (2023) Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci 32:e4582. (PMID: 36718848994259110.1002/pro.4582) ; Ye F, Nager AR, Nachury MV (2018) BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J Cell Biol 217:1847–1868. (PMID: 29483145594030410.1083/jcb.201709041) ; Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP (2017) Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–1314.e18. (PMID: 28602352547394110.1016/j.cell.2017.05.025) ; Zhu X, Wang J, Li S, Lechtreck K, Pan J (2021) IFT54 directly interacts with kinesin-II and IFT dynein to regulate anterograde intraflagellar transport. EMBO J 40:e105781. (PMID: 3336845010.15252/embj.2020105781)
  • Grant Information: United Kingdom WT_ Wellcome Trust
  • Contributed Indexing: Keywords: Cilia; Dynein; Intraflagellar Transport; Microtubule
  • Substance Nomenclature: EC 3.6.4.2 (Dyneins)
  • Entry Date(s): Date Created: 20240307 Date Completed: 20240404 Latest Revision: 20240412
  • Update Code: 20240413
  • PubMed Central ID: PMC10987677

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -