Zum Hauptinhalt springen

Impact of population aging on future temperature-related mortality at different global warming levels.

Chen, K ; de Schrijver E ; et al.
In: Nature communications, Jg. 15 (2024-02-27), Heft 1, S. 1796
Online academicJournal

Titel:
Impact of population aging on future temperature-related mortality at different global warming levels.
Autor/in / Beteiligte Person: Chen, K ; de Schrijver E ; Sivaraj, S ; Sera, F ; Scovronick, N ; Jiang, L ; Roye, D ; Lavigne, E ; Kyselý, J ; Urban, A ; Schneider, A ; Huber, V ; Madureira, J ; Mistry, MN ; Cvijanovic, I ; Gasparrini, A ; Vicedo-Cabrera, AM
Link:
Zeitschrift: Nature communications, Jg. 15 (2024-02-27), Heft 1, S. 1796
Veröffentlichung: [London] : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 2041-1723 (electronic)
DOI: 10.1038/s41467-024-45901-z
Schlagwort:
  • Temperature
  • Cold Temperature
  • Hot Temperature
  • Mortality
  • Global Warming
  • Climate Change
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Corporate Authors: MCC Collaborative Research Network
  • Publication Type: Journal Article
  • Language: English
  • [Nat Commun] 2024 Feb 27; Vol. 15 (1), pp. 1796. <i>Date of Electronic Publication: </i>2024 Feb 27.
  • MeSH Terms: Global Warming* ; Climate Change* ; Temperature ; Cold Temperature ; Hot Temperature ; Mortality
  • References: de Schrijver, E. et al. Nationwide projections of heat- and cold-related mortality impacts under various climate change and population development scenarios in Switzerland. Environ. Res. Lett. 18, 12 (2023). ; Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016). (PMID: 10.5194/gmd-9-1937-2016) ; Vicedo-Cabrera, A. M., Sera, F. & Gasparrini, A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology 30, 321–329 (2019). (PMID: 10.1097/EDE.0000000000000982308298326533172) ; Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019). (PMID: 10.5194/gmd-12-3055-2019) ; Samir, K. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017). (PMID: 10.1016/j.gloenvcha.2014.06.004) ; Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015). (PMID: 10.1016/S0140-6736(14)62114-0260033804521077) ; Burkart, K. G. et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet 398, 685–697 (2021). (PMID: 10.1016/S0140-6736(21)01700-1344192048387975) ; Weinberger, K. R. et al. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environ. Int 107, 196–204 (2017). (PMID: 10.1016/j.envint.2017.07.006287502255575805) ; Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1, e360–e367 (2017). (PMID: 10.1016/S2542-5196(17)30156-0292768035729020) ; Gu, S. et al. Projections of temperature-related cause-specific mortality under climate change scenarios in a coastal city of China. Environ. Int 143, 105889, (2020). (PMID: 10.1016/j.envint.2020.10588932619913) ; Hajat, S., Vardoulakis, S., Heaviside, C. & Eggen, B. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health 68, 641–648 (2014). (PMID: 10.1136/jech-2013-20244924493740) ; Vardoulakis, S. et al. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ. Health Perspect. 122, 1285–1292 (2014). (PMID: 10.1289/ehp.1307524252229674256046) ; Lee, J. Y. & Kim, H. Projection of future temperature-related mortality due to climate and demographic changes. Environ. Int. 94, 489–494 (2016). (PMID: 10.1016/j.envint.2016.06.00727316627) ; Rai, M. et al. Impact of climate and population change on temperature-related mortality burden in Bavaria, Germany. Environ. Res Lett. 14, 124080 (2019). (PMID: 10.1088/1748-9326/ab5ca6) ; Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change 150, 391–402 (2018). (PMID: 10.1007/s10584-018-2274-3304052776217994) ; Ebi, K., Campbell-Lendrum, D. & Wyns, A. The 1.5 Health Report: Synthesis on Health & Climate Science In the IPCC SR1 5 (IPCC, 2018). ; Vicedo-Cabrera, A. M. et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int 111, 239–246, (2018). (PMID: 10.1016/j.envint.2017.11.00629272855) ; Gosling, S. N. et al. Adaptation to climate change: A comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 125, 087008 (2017). (PMID: 10.1289/EHP634288859795783656) ; Population Division of the Department of Economic and Social Affairs. 2019 Revision of World Population Prospects (Population Division of the Department of Economic and Social Affairs, 2019). ; Scovronick, N. et al. Impact of population growth and population ethics on climate change mitigation policy. Proc. Natl Acad. Sci. USA 114, 12338–12343 (2017). (PMID: 10.1073/pnas.1618308114290872985699025) ; United Nations Environment Programme. Emissions Gap Report 2021: The Heat Is On – A World of Climate Promises Not Yet Delivered (Nairobi, 2021). ; Höhne, N. et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Chang 11, 820–822 (2021). (PMID: 10.1038/s41558-021-01142-2) ; Ma, Y., Zhou, L. & Chen, K. Burden of cause-specific mortality attributable to heat and cold: A multicity time-series study in Jiangsu Province, China. Environ. Int. 144, 105994 (2020). (PMID: 10.1016/j.envint.2020.10599432745780) ; O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016). (PMID: 10.5194/gmd-9-3461-2016) ; IPCC. Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021). ; Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017). (PMID: 10.1016/j.gloenvcha.2015.03.008) ; Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non‐linear models. Stat. Med. 29, 2224–2234 (2010). (PMID: 10.1002/sim.3940208123032998707) ; Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed‐effects framework for meta‐analysis. Stat. Med. 38, 5429–5444 (2019). (PMID: 10.1002/sim.836231647135) ; Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Z. 15, 259–263 (2006). (PMID: 10.1127/0941-2948/2006/0130) ; Gasparrini, A., Armstrong, B. & Kenward, M. G. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012). (PMID: 10.1002/sim.5471228070433546395) ; Tobías, A., Armstrong, B. & Gasparrini, A. Brief Report: Investigating uncertainty in the minimum mortality temperature: Methods and application to 52 Spanish cities. Epidemiology 28, 72–76 (2017). (PMID: 10.1097/EDE.000000000000056727748681) ; Gasparrini, A. & Leone, M. Attributable risk from distributed lag models. BMC Med. Res. Methodol. 14, 55 (2014). (PMID: 10.1186/1471-2288-14-55247585094021419)
  • Grant Information: MR/V034162/1 United Kingdom MRC_ Medical Research Council; UL1 TR001863 United States TR NCATS NIH HHS
  • Contributed Indexing: Investigator: B Armstrong; R Schneider; A Tobias; C Astrom; Y Guo; Y Honda; R Abrutzky; S Tong; M de Sousa Zanotti Stagliorio Coelho; PHN Saldiva; PM Correa; NV Ortega; H Kan; S Osorio; H Orru; E Indermitte; JJK Jaakkola; N Ryti; M Pascal; K Katsouyanni; A Analitis; F Mayvaneh; A Entezari; P Goodman; A Zeka; P Michelozzi; F de'Donato; M Hashizume; B Alahmad; MH Diaz; C De la Cruz Valencia; A Overcenco; D Houthuijs; C Ameling; S Rao; G Carrasco-Escobar; X Seposo; SP da Silva; IH Holobaca; F Acquaotta; H Kim; W Lee; C Íñiguez; B Forsberg; MS Ragettli; YL Guo; SC Pan; S Li; V Colistro; A Zanobetti; J Schwartz; TN Dang; D Van Dung; HK Carlsen; JP Cauchi; S Achilleos; R Raz
  • Entry Date(s): Date Created: 20240227 Date Completed: 20240229 Latest Revision: 20240320
  • Update Code: 20240320
  • PubMed Central ID: PMC10899213

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -