Zum Hauptinhalt springen

Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals.

Attema, B ; Kummu, O ; et al.
In: Archives of toxicology, Jg. 98 (2024-03-01), Heft 3, S. 911-928
Online academicJournal

Titel:
Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals.
Autor/in / Beteiligte Person: Attema, B ; Kummu, O ; Pitkänen, S ; Weisell, J ; Vuorio, T ; Pennanen, E ; Vorimo, M ; Rysä, J ; Kersten, S ; Levonen, AL ; Hakkola, J
Link:
Zeitschrift: Archives of toxicology, Jg. 98 (2024-03-01), Heft 3, S. 911-928
Veröffentlichung: Berlin, New York, Springer-Verlag., 2024
Medientyp: academicJournal
ISSN: 1432-0738 (electronic)
DOI: 10.1007/s00204-023-03658-2
Schlagwort:
  • Mice
  • Animals
  • Male
  • Female
  • Mice, Inbred C57BL
  • Receptors, Cytoplasmic and Nuclear metabolism
  • Liver
  • Glucose metabolism
  • Lipids
  • Benzhydryl Compounds
  • Endocrine Disruptors
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Arch Toxicol] 2024 Mar; Vol. 98 (3), pp. 911-928. <i>Date of Electronic Publication: </i>2024 Jan 05.
  • MeSH Terms: Endocrine Disruptors* ; Mice ; Animals ; Male ; Female ; Mice, Inbred C57BL ; Receptors, Cytoplasmic and Nuclear / metabolism ; Liver ; Glucose / metabolism ; Lipids ; Benzhydryl Compounds
  • References: Alonso-Magdalena P, Morimoto S, Ripoll C et al (2006) The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112. (PMID: 16393666) ; Angle BM, Do RP, Ponzi D et al (2013) Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol 42:256–268. https://doi.org/10.1016/J.REPROTOX.2013.07.017. (PMID: 10.1016/J.REPROTOX.2013.07.01723892310) ; Ariemma F, D’Esposito V, Liguoro D et al (2016) Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS ONE 11:e0150762. (PMID: 269425974778877) ; Attema B, Janssen AWF, Rijkers D et al (2022) Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice. Mol Metab 2022:11602. ; Behr A-C, Kwiatkowski A, Ståhlman M et al (2020a) Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch Toxicol 94:1673–1686. (PMID: 322534668241792) ; Behr A-C, Plinsch C, Braeuning A, Buhrke T (2020b) Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol in Vitro 62:104700. (PMID: 31676336) ; Bjork JA, Butenhoff JL, Wallace KB (2011) Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288:8–17. https://doi.org/10.1016/j.tox.2011.06.012. (PMID: 10.1016/j.tox.2011.06.01221723365) ; Brulport A, Vaiman D, Bou-Maroun E et al (2020) Hepatic transcriptome and DNA methylation patterns following perinatal and chronic BPS exposure in male mice. BMC Genomics 21:1–16. https://doi.org/10.1186/S12864-020-07294-3/TABLES/1. (PMID: 10.1186/S12864-020-07294-3/TABLES/1) ; Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11:183–190. (PMID: 156851731440292) ; Cox HM, Tough IR, Woolston A-M et al (2010) Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab 11:532–542. https://doi.org/10.1016/j.cmet.2010.04.014. (PMID: 10.1016/j.cmet.2010.04.014205191242890049) ; Darbre PD (2017) Endocrine disruptors and obesity. Curr Obes Rep 6:18–27. (PMID: 282051555359373) ; DeWitt JC, Copeland CB, Strynar MJ, Luebke RW (2008) Perfluorooctanoic acid-induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ Health Perspect 116:644–650. (PMID: 184703132367677) ; Dhawan SS, Xia S, Tait DS et al (2018) Oral dosing of rodents using a palatable tablet. Psychopharmacology 235:1527–1532. https://doi.org/10.1007/s00213-018-4863-2. (PMID: 10.1007/s00213-018-4863-2295118085919998) ; Fragki S, Dirven H, Fletcher T et al (2021) Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 51:141–164. (PMID: 33853480) ; Gore AC, Chappell VA, Fenton SE et al (2015) EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1–E150. (PMID: 265445314702494) ; Gwag T, Meng Z, Sui Y et al (2019) Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J Hepatol 70:930–940. https://doi.org/10.1016/j.jhep.2018.12.038. (PMID: 10.1016/j.jhep.2018.12.038306774596462244) ; Hakkola J, Rysä J, Hukkanen J (2016) Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim Biophys Acta (BBA) Gene Regul Mech 1859:1072–1082. https://doi.org/10.1016/j.bbagrm.2016.03.012. (PMID: 10.1016/j.bbagrm.2016.03.012) ; Hassani-Nezhad-Gashti F, Rysä J, Kummu O et al (2018) Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem Pharmacol 148:253–264. https://doi.org/10.1016/j.bcp.2018.01.001. (PMID: 10.1016/j.bcp.2018.01.00129309761) ; Haverinen E, Fernandez MF, Mustieles V, Tolonen H (2021) Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health 18:13047. (PMID: 349486528701112) ; Heindel JJ, Vom Saal FS, Blumberg B et al (2015) Parma consensus statement on metabolic disruptors. Environ Health 14:54. https://doi.org/10.1186/s12940-015-0042-7. (PMID: 10.1186/s12940-015-0042-7260920374473834) ; Heindel JJ, Blumberg B, Cave M et al (2017) Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68:3–33. (PMID: 27760374) ; Hukkanen J, Hakkola J (2020) PXR and 4β-hydroxycholesterol axis and the components of metabolic syndrome. Cells 9:2445. https://doi.org/10.3390/cells9112445. (PMID: 10.3390/cells9112445331824777696146) ; Intrasuksri U, Rangwala SM, Noonan DJ, Feller DR (1998) Mechanisms of peroxisome proliferation by perfluorooctanoic acid and endogenous fatty acids. General Pharmacol Vasc Syst 31:187–197. ; Jenkins S, Wang J, Eltoum I et al (2011) Chronic oral exposure to bisphenol A results in a nonmonotonic dose response in mammary carcinogenesis and metastasis in MMTV-erbB2 mice. Environ Health Perspect 119:1604–1609. (PMID: 219887663226508) ; Ji H, Song N, Ren J et al (2020) Metabonomics reveals bisphenol A affects fatty acid and glucose metabolism through activation of LXR in the liver of male mice. Sci Total Environ 703:134681. (PMID: 31715463) ; Jiang Y, Feng D, Ma X et al (2019) Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice. Hepatology 69:343–358. https://doi.org/10.1002/hep.30131. (PMID: 10.1002/hep.3013130048004) ; Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481. (PMID: 10953022380258) ; Karpale M, Käräjämäki AJ, Kummu O et al (2021) Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol 178:2461–2481. https://doi.org/10.1111/bph.15433. (PMID: 10.1111/bph.1543333687065) ; Ke ZH, Pan JX, Jin LY et al (2016) Bisphenol a exposure may induce hepatic lipid accumulation via reprogramming the DNA methylation patterns of genes involved in lipid metabolism. Sci Rep. https://doi.org/10.1038/SREP31331. (PMID: 10.1038/SREP31331279767045157041) ; Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371. https://doi.org/10.1016/j.molmet.2014.02.002. (PMID: 10.1016/j.molmet.2014.02.002249448964060217) ; Krey G, Braissant O, L’Horset F et al (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11:779–791. https://doi.org/10.1210/mend.11.6.0007. (PMID: 10.1210/mend.11.6.00079171241) ; Le Corre L, Besnard P, Chagnon M-C (2015) BPA, an energy balance disruptor. Crit Rev Food Sci Nutr 55:769–777. (PMID: 24915348) ; Legeay S, Faure S (2017) Is bisphenol A an environmental obesogen? Fundam Clin Pharmacol 31:594–609. (PMID: 28622415) ; Ling Z, Shu N, Xu P et al (2016) Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem Pharmacol 100:98–111. https://doi.org/10.1016/j.bcp.2015.11.023. (PMID: 10.1016/j.bcp.2015.11.02326616219) ; Liu J, Yu P, Qian W et al (2013) Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure. PLoS ONE 8:e64143. (PMID: 236755233651242) ; Liu X, Sakai H, Nishigori M et al (2019) Receptor-binding affinities of bisphenol A and its next-generation analogs for human nuclear receptors. Toxicol Appl Pharmacol 377:114610. (PMID: 31195007) ; Liu B, Zhu L, Wang M, Sun Q (2023) Associations between per-and polyfluoroalkyl substances exposures and blood lipid levels among adults—a meta-analysis. Environ Health Perspect 131:056001. (PMID: 3714124410159273) ; Louisse J, Rijkers D, Stoopen G et al (2020) Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol 94:3137–3155. https://doi.org/10.1007/s00204-020-02808-0. (PMID: 10.1007/s00204-020-02808-0325880877415755) ; Marmugi A, Ducheix S, Lasserre F et al (2012) Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology 55:395–407. (PMID: 21932408) ; Martins T, Matos AF, Soares J et al (2022) Comparison of gelatin flavors for oral dosing of C57BL/6J and FVB/N mice. J Am Assoc Lab Anim Sci 61:89–95. (PMID: 348479848786383) ; McCabe C, Anderson OS, Montrose L et al (2017) Sexually dimorphic effects of early-life exposures to endocrine disruptors: sex-specific epigenetic reprogramming as a potential mechanism. Curr Environ Health Rep 4:426–438. (PMID: 289801595784425) ; Moon MK, Jeong I-K, Oh TJ et al (2015) Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J Endocrinol 226:35–42. (PMID: 25972359) ; Moriyama K, Tagami T, Akamizu T et al (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190. (PMID: 12414890) ; Murakami K, Ide T, Suzuki M et al (1999) Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor α. Biochem Biophys Res Commun 260:609–613. (PMID: 10403814) ; Nakamura K, Moore R, Negishi M, Sueyoshi T (2007) Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 282:9768–9776. https://doi.org/10.1074/jbc.M610072200. (PMID: 10.1074/jbc.M61007220017267396) ; OECD (2008) OECD guidelines for the testing of chemicals: repeated dose 28-day oral toxicity study in rodents. Drug Chem Toxicol 34:13. ; Patsouris D, Reddy JK, Müller M, Kersten S (2006) Peroxisome proliferator-activated receptor α mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147:1508–1516. (PMID: 16357043) ; Rakhshandehroo M, Sanderson LM, Matilainen M et al (2007) Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res 2007:1. ; Rando G, Wahli W (2011) Sex differences in nuclear receptor-regulated liver metabolic pathways. Biochim Biophys Acta (BBA) Mol Basis Dis 1812:964–973. ; Rebholz SL, Jones T, Herrick RL et al (2016) Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice. Toxicol Rep 3:46–54. https://doi.org/10.1016/j.toxrep.2015.11.004. (PMID: 10.1016/j.toxrep.2015.11.00426942110) ; Rosen MB, Das KP, Rooney J et al (2017) PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 387:95–107. (PMID: 28558994) ; Rysä J, Buler M, Savolainen MJ et al (2013) Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther 93:556–563. https://doi.org/10.1038/clpt.2013.48. (PMID: 10.1038/clpt.2013.4823588309) ; Schlezinger JJ, Puckett H, Oliver J et al (2020) Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Toxicol Appl Pharmacol 405:115204. (PMID: 328227377503133) ; Schlezinger JJ, Hyötyläinen T, Sinioja T et al (2021) Perfluorooctanoic acid induces liver and serum dyslipidemia in humanized pparα mice fed an american diet. Toxicol Appl Pharmacol 426:115644. (PMID: 342524128338894) ; Small L, Ehrlich A, Iversen J et al (2022) Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Mol Metab 57:101440. https://doi.org/10.1016/j.molmet.2022.101440. (PMID: 10.1016/j.molmet.2022.101440350264358810558) ; Spruiell K, Richardson RM, Cullen JM et al (2014) Role of Pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem 289:3244–3261. https://doi.org/10.1074/jbc.M113.494575. (PMID: 10.1074/jbc.M113.49457524362030) ; Staels B, Dallongeville J, Auwerx J et al (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088–2093. (PMID: 9808609) ; Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator–activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95:108–117. (PMID: 17047030) ; Tohmé M, Prud’homme SM, Boulahtouf A et al (2014) Estrogen-related receptor γ is an in vivo receptor of bisphenol A. FASEB J 28:3124–3133. (PMID: 24744145) ; Toye AA, Lippiat JD, Proks P et al (2005) A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48:675–686. https://doi.org/10.1007/s00125-005-1680-z. (PMID: 10.1007/s00125-005-1680-z15729571) ; Vandenberg LN, Chahoud I, Heindel JJ et al (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070. (PMID: 203388582920080) ; Vandenberg LN, Welshons WV, vom Saal FS et al (2014) Should oral gavage be abandoned in toxicity testing of endocrine disruptors? Environ Health 13:46. https://doi.org/10.1186/1476-069X-13-46. (PMID: 10.1186/1476-069X-13-46249614404069342) ; Villar-Pazos S, Martinez-Pinna J, Castellano-Muñoz M et al (2017) Molecular mechanisms involved in the non-monotonic effect of bisphenol—a on Ca 2+ entry in mouse pancreatic β-cells. Sci Rep 7:11770. (PMID: 289241615603522) ; Wang L, Wang Y, Liang Y et al (2013) Specific accumulation of lipid droplets in hepatocyte nuclei of PFOA-exposed BALB/c mice. Sci Rep 3:1–5. ; Wolf DC, Moore T, Abbott BD et al (2008) Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPAR-α knockout and wild-type mice. Toxicol Pathol 36:632–639. (PMID: 18467680) ; Yan S, Zhang H, Zheng F et al (2015) Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci Rep 5:11029. (PMID: 260663764464286) ; Zhang L (2021) Method for voluntary oral administration of drugs in mice. STAR Protoc 2:100330. https://doi.org/10.1016/j.xpro.2021.100330. (PMID: 10.1016/j.xpro.2021.100330336447707887435) ; Zhou C (2016) Novel functions of PXR in cardiometabolic disease. Biochim Biophys Acta (BBA) Gene Regul Mech 1859:1112–1120. https://doi.org/10.1016/j.bbagrm.2016.02.015. (PMID: 10.1016/j.bbagrm.2016.02.015) ; Zhou J, Zhai Y, Mu Y et al (2006) A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J Biol Chem 281:15013–15020. https://doi.org/10.1074/jbc.M511116200. (PMID: 10.1074/jbc.M51111620016556603) ; Zhou J, Febbraio M, Wada T et al (2008) Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology 134:556-567.e1. https://doi.org/10.1053/j.gastro.2007.11.037. (PMID: 10.1053/j.gastro.2007.11.03718242221) ; Zoeller RT, Brown TR, Doan LL et al (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153:4097–4110. (PMID: 227339743423612)
  • Grant Information: 825762 H2020 Health; 323706 Academy of Finland; 336449 Academy of Finland
  • Contributed Indexing: Keywords: Endocrine-disrupting chemicals (EDCs); Glucose metabolism; Hepatic steatosis; Lipid metabolism; Metabolic disruption; Metabolism-disrupting chemicals; Nuclear receptors
  • Substance Nomenclature: 0 (Endocrine Disruptors) ; 0 (Receptors, Cytoplasmic and Nuclear) ; IY9XDZ35W2 (Glucose) ; 0 (Lipids) ; 0 (Benzhydryl Compounds)
  • Entry Date(s): Date Created: 20240105 Date Completed: 20240214 Latest Revision: 20240409
  • Update Code: 20240409
  • PubMed Central ID: PMC10861694

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -