Zum Hauptinhalt springen

Plants and global warming: challenges and strategies for a warming world.

Seth, P ; Sebastian, J
In: Plant cell reports, Jg. 43 (2024-01-02), Heft 1, S. 27
Online academicJournal

Titel:
Plants and global warming: challenges and strategies for a warming world.
Autor/in / Beteiligte Person: Seth, P ; Sebastian, J
Link:
Zeitschrift: Plant cell reports, Jg. 43 (2024-01-02), Heft 1, S. 27
Veröffentlichung: Berlin ; New York : Springer, 1981-, 2024
Medientyp: academicJournal
ISSN: 1432-203X (electronic)
DOI: 10.1007/s00299-023-03083-w
Schlagwort:
  • Climate Change
  • Acclimatization
  • Temperature
  • Global Warming
  • Plants
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Plant Cell Rep] 2024 Jan 02; Vol. 43 (1), pp. 27. <i>Date of Electronic Publication: </i>2024 Jan 02.
  • MeSH Terms: Global Warming* ; Plants* ; Climate Change ; Acclimatization ; Temperature
  • References: Acevedo M, Pixley K, Zinyengere N, Meng S, Tufan H, Cichy K, Bizikova L, Isaacs K, Ghezzi-Kopel K, Porciello J (2020) A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat Plants 6:1231–1241. (PMID: 330516167553851) ; Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S (2016) Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiol Biochem 106:73–81. (PMID: 27149034) ; Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344. (PMID: 194395702705047) ; Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147. ; Bahuguna RN, Jagadish KSV (2015) Temperature regulation of plant phenological development. Environ Exp Bot 111:83–90. ; Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118. (PMID: 316952057024682) ; Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:0980–0989. ; Balazadeh S (2022) A ‘hot’ cocktail: the multiple layers of thermomemory in plants. Curr Opin Plant Biol 65:1–9. ; Balcerowicz M (2020) PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling. Physiol Plant 169:347–356. (PMID: 32181879) ; Balla K, Karsai I, Bónis P, Kiss T, Berki Z, Horváth Á, Mayer M, Bencze S, Veisz O (2019) Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE 14:1–20. ; Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240. (PMID: 24253197) ; Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delkera C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180:757–766. (PMID: 310006346548272) ; Ben MS, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I (2021) Climate change, crop yields, and grain quality of C 3 cereals: a meta-analysis of [CO 2 ], temperature, and drought effects. Plants 10(6):1052. https://doi.org/10.3390/plants10061052. (PMID: 10.3390/plants10061052) ; Benson DO, Dirmeyer PA (2021) Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J Clim 34:2175–2187. ; Bernardo-García S, de Lucas M, Martínez C, Espinosa-Ruiz A, Davière JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694. (PMID: 250854204117943) ; Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R (2021) Role of chromatin architecture in plant stress responses: an update. Front Plant Sci 11:1–22. ; Bi H, Zhao Y, Li H, Liu W (2020) Wheat heat shock factor tahsfa6f increases aba levels and enhances tolerance to multiple abiotic stresses in transgenic plants. Int J Mol Sci 21:1–16. ; Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:2–29. ; Boehlein SK, Liu P, Webster A et al (2019) Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant J 99:23–40. (PMID: 30746832) ; Bourgine B, Guihur A (2021) Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Front Plant Sci 12:1–10. ; Braun DM, Washburn JD, Wood JD (2023) Enhancing the resilience of plant systems to climate change. J Exp Bot 74:2787–2789. (PMID: 37103001) ; Brower-Toland B, Shyu C, Vega-Sanchez ME, Slewinski TL (2023) Pedigree or identity? How genome editing can fundamentally change the path for crop development. J Exp Bot 74:2794–2798. (PMID: 3673826910134896) ; Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN (2018) Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47:306–318.e5. (PMID: 30415657) ; Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346. (PMID: 30786235) ; Casal JJ, Qüesta JI (2018) Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol 217:1029–1034. (PMID: 29139132) ; Cerný M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37:1641–1655. (PMID: 24393122) ; Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. ; Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD (2009) Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem 284:20848–20857. (PMID: 194911062742850) ; Chen C, Begcy K, Liu K, Folsom JJ, Wang Z, Zhang C, Walia H (2016) Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol 171:606–622. (PMID: 269368964854699) ; Chen K, Horton RM, Bader DA, Lesk C, Jiang L, Jones B, Zhou L, Chen X, Bi J, Kinney PL (2017) Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ Pollut 224:317–325. (PMID: 282373095387110) ; Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA (2020) An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants 6:522–532. (PMID: 322845447231574) ; Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447. (PMID: 15086804) ; Cox DTC, Maclean IMD, Gardner AS, Gaston KJ (2020) Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob Change Biol 26:7099–7111. ; Cui X, Zheng Y, Lu Y, Issakidis-Bourguet E, Zhou DX (2021) Metabolic control of histone demethylase activity involved in plant response to high temperature. Plant Physiol 185:1813–1828. (PMID: 337939498133595) ; Dang FF, Wang YN, Yu L et al (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell Environ 36:757–774. (PMID: 22994555) ; de Vries J, Ischebeck T (2020) Ties between stress and lipid droplets pre-date seeds. Trends Plant Sci 25:1203–1214. (PMID: 32921563) ; de Zélicourt A, Synek L, Saad MM et al (2018) Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLoS Genet 14(3):e1007273. https://doi.org/10.1371/journal.pgen.1007273. (PMID: 10.1371/journal.pgen.1007273295541175875868) ; Ding Y, Shi Y, Yang S (2020) Molecular regulation of plant responses to environmental temperatures. Mol Plant 13:544–564. (PMID: 32068158) ; Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007. (PMID: 20951054) ; Dobrá J, Černý M, Štorchová H et al (2015) The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci 231:52–61. (PMID: 25575991) ; Escandón M, Cañal MJ, Pascual J, Pinto G, Correia B, Amaral J, Meijón M (2016) Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol 36:63–77. (PMID: 26764270) ; Escandón M, Meijón M, Valledor L, Pascual J, Pinto G, Cañal MJ (2018) Metabolome integrated analysis of high-temperature response in Pinus radiata. Front Plant Sci 9:485. https://doi.org/10.3389/fpls.2018.00485. (PMID: 10.3389/fpls.2018.00485297195465914196) ; Fahad S, Hussain S, Saud S et al (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198. (PMID: 26995314) ; Fan C, Hou M, Si P, Sun H, Zhang K, Bai Z, Wang G, Li C, Liu L, Zhang Y (2022) Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot. Front Plant Sci 13:1007145. https://doi.org/10.3389/fpls.2022.1007145. (PMID: 10.3389/fpls.2022.1007145364261499679381) ; Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J (2019) PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 116:3893–3898. (PMID: 307555256397578) ; Ferguson JN, Tidy AC, Murchie EH, Wilson ZA (2021) The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. Plant Cell Environ 44:2066–2089. (PMID: 33538010) ; Fiorucci AS, Galvão VC, Ince YÇ, Boccaccini A, Goyal A, Allenbach Petrolati L, Trevisan M, Fankhauser C (2020) PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytol 226:50–58. (PMID: 31705802) ; Franklin KA, Lee SH, Patel D et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235. (PMID: 221239473250122) ; Friedrich T, Oberkofler V, Trindade I et al (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 12:3426. https://doi.org/10.1038/s41467-021-23786-6. (PMID: 10.1038/s41467-021-23786-6341035168187452) ; Gaillochet C, Burko Y, Platre MP, Zhang L, Simura J, Willige BC, Kumar SV, Ljung K, Chory J, Busch W (2020) HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in Arabidopsis. Development 147(24):dev192625. https://doi.org/10.1242/dev.192625. (PMID: 10.1242/dev.192625331443937758624) ; Gao J, Wang MJ, Wang JJ, Lu HP, Liu JX (2022) bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH 3:1–11. https://doi.org/10.1007/s42994-021-00062-1. (PMID: 10.1007/s42994-021-00062-136304196) ; Giri A, Heckathorn S, Mishra S, Krause C (2017a) Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants 6:443–448. ; Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S, Nandi AK (2017b) GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J 91:802–815. (PMID: 28622438) ; González-García MP, Conesa CM, Lozano-Enguita A et al (2023) Temperature changes in the root ecosystem affect plant functionality. Plant Commun 4:100514. (PMID: 36585788) ; Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 95:7197–7202. (PMID: 961856222781) ; Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFS): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114. https://doi.org/10.3389/fpls.2016.00114. (PMID: 10.3389/fpls.2016.00114269040764746267) ; Hahm J, Kim K, Qiu Y, Chen M (2020) Increasing ambient temperature progressively disassemble Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat Commun 11:1660. https://doi.org/10.1038/s41467-020-15526-z. (PMID: 10.1038/s41467-020-15526-z322459537125078) ; Han SH, Park YJ, Park CM (2019) Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis. Plant Cell Physiol 60:230–241. (PMID: 30329122) ; Han SH, Park YJ, Park CM (2020) HOS1 activates DNA repair systems to enhance plant thermotolerance. Nature Plants 6:1439–1446. (PMID: 33199892) ; Hanzawa T, Shibasaki K, Numata T, Kawamura Y, Gaude T, Rahman A (2013) Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1-dependent endosomal trafficking pathway. Plant Cell 25:3424–3433. (PMID: 240030523809541) ; Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA (2021) Hot topic: thermosensing in plants. Plant Cell Environ 44:2018–2033. (PMID: 333142708358962) ; Heckathorn SA, Giri A, Mishra S, Bista D (2013) Heat stress and roots. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley, Hoboken, NJ, pp 109–136. ; Heucken N, Ivanov R (2018) The retromer, sorting nexins and the plant endomembrane protein trafficking. J Cell Sci 131(2):jcs203695. https://doi.org/10.1242/jcs.203695. (PMID: 10.1242/jcs.20369529061884) ; Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 5:10533. https://doi.org/10.1038/srep10533. (PMID: 10.1038/srep10533260138354444972) ; Huang BR, Taylor HM, Mcmichael BL (1991a) Effects of temperature on the development of metaxylem in primary wheat roots and its hydraulic consequence. Ann Bot 67:163–166. ; Huang BR, Taylor HM, McMichael BL (1991b) Growth and development of seminal and crown roots of wheat seedlings as affected by temperature. Environ Exp Bot 31:471–477. ; Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63:3455–3465. (PMID: 22328905) ; Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199. (PMID: 274932135047099) ; Huang J, Zhao X, Bürger M, Wang Y, Chory J (2021) Two interacting ethylene response factors regulate heat stress response. Plant Cell 33:338–357. (PMID: 33793870) ; Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 8:1808. https://doi.org/10.1038/s41467-017-01674-2. (PMID: 10.1038/s41467-017-01674-2291806985704021) ; Hurkman WJ, McCue KF, Altenbach SB et al (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881. ; Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K, Gogol-Döring A, Quint M, Delker C (2017) Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol 17(1):114. https://doi.org/10.1186/s12870-017-1068-5. (PMID: 10.1186/s12870-017-1068-5286837795501000) ; Ibañez C, Delker C, Martinez C et al (2018) Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr Biol 28:303-310.e3. (PMID: 29337075) ; Jagadish SVK (2020) Heat stress during flowering in cereals—effects and adaptation strategies. New Phytol 226:1567–1572. (PMID: 31943230) ; Jagadish SVK, Way DA, Sharkey TD (2021) Plant heat stress: concepts directing future research. Plant Cell Environ 44:1992–2005. (PMID: 33745205) ; Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z (2019) Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol Plant Pathol 20:1005–1012. (PMID: 309245956589723) ; Janet R, Richard W, Tim S, Craig H (2018) How to sustainably feed 10 billion people by 2050, in 21 charts. World Resources Institute. https://www.wri.org. ; Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N, Foyer C (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot 71:3780–3802. (PMID: 319703957316970) ; Jégu T, Veluchamy A, Ramirez-Prado JS et al (2017) The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol 18:114. https://doi.org/10.1186/s13059-017-1246-7. (PMID: 10.1186/s13059-017-1246-7286190725471679) ; Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029. (PMID: 10.3389/fpls.2016.01029274715134943945) ; Jung JH, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889. (PMID: 27789797) ; Jung JH, Barbosa AD, Hutin S et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260. (PMID: 32848244) ; Karlova R, Boer D, Hayes S, Testerink C (2021) Root plasticity under abiotic stress. Plant Physiol 187:1057–1070. (PMID: 347342798566202) ; Kato S, Takahashi Y, Fujii Y, Sasaki K, Hirano S, Okajima K, Kodama Y (2021) The photo-thermochemical properties and functions of Marchantia phototropin encoded by an unduplicated gene in land plant evolution. J Photochem Photobiol, B 224:112305. (PMID: 34562831) ; Kerbler SM, Wigge PA (2023) Temperature sensing in plants. Annu Rev Plant Biol 74:341–366. (PMID: 36854477) ; Khan A, Bilal S, Khan AL, Imran M, Shahzad R, Al-Harrasi A, Al-Rawahi A, Al-Azhri M, Mohanta TK, Lee IJ (2020) Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants 9(5):620. https://doi.org/10.3390/plants9050620. (PMID: 10.3390/plants9050620324139557285242) ; Kim S, Hwang G, Kim S, Thi TN, Kim H, Jeong J, Kim J, Kim J, Choi G, Oh E (2020) The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nat Commun 11:1053. https://doi.org/10.1038/s41467-020-14905-w. (PMID: 10.1038/s41467-020-14905-w321030197044213) ; Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413. (PMID: 19249207) ; Kothari A, Lachowiec J (2021) Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int J Mol Sci 22(5):2706. https://doi.org/10.3390/ijms22052706. (PMID: 10.3390/ijms22052706338001277962182) ; Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. (PMID: 22291134) ; Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861. (PMID: 27856901) ; Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147. (PMID: 20079334) ; Kwasniewski M, Daszkowska-Golec A, Janiak A, Chwialkowska K, Nowakowska U, Sablok G, Szarejko I (2016) Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions. J Exp Bot 67:1079–1094. (PMID: 26585228) ; Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602. (PMID: 204102552877484) ; Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. (PMID: 11842171148929) ; Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. (PMID: 159233221150405) ; Le Mouël C, Forslund A (2017) How can we feed the world in 2050? A review of the responses from global scenario studies. Eur Rev Agric Econ 44:541–591. ; Lee HJ, Jung JH, Cortés Llorca L, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473. https://doi.org/10.1038/ncomms6473. (PMID: 10.1038/ncomms647325400039) ; Lee S, Wang W, Huq E (2021) Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat Commun 12(1):3656. https://doi.org/10.1038/s41467-021-24018-7. (PMID: 10.1038/s41467-021-24018-7341353478209091) ; Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900. (PMID: 27789798) ; Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. (PMID: 26738594) ; Li J, Huang Q, Sun M et al (2016) Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Sci Rep 6:38401. https://doi.org/10.1038/srep38401. (PMID: 10.1038/srep38401279179035137020) ; Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11:627969. https://doi.org/10.3389/fpls.2020.627969. (PMID: 10.3389/fpls.2020.627969336433377905216) ; Lin J-S, Kuo C-C, Yang I-C, Tsai W-A, Shen Y-H, Lin C-C, Liang Y-C, Li Y-C, Kuo Y-W, King Y-C, Lai H-M, Jeng S-T (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in arabidopsis. Front Plant Sci 9:68. https://doi.org/10.3389/fpls.2018.00068. (PMID: 10.3389/fpls.2018.00068294498555799662) ; Ling Y, Serrano N, Gao G et al (2018) Thermopriming triggers splicing memory in Arabidopsis. J Exp Bot 69:2659–2675. (PMID: 294745815920379) ; Lipper L, Thornton P, Campbell BM et al (2014) Climate-smart agriculture for food security. Nat Clim Chang 4:1068–1072. ; Liu HC, Charng YY (2012) Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav 7(5):547–550. (PMID: 225168183419016) ; Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34:738–751. (PMID: 21241330) ; Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267. https://doi.org/10.3389/fpls.2015.00267. (PMID: 10.3389/fpls.2015.00267259647894408840) ; Liu J, Feng L, Gu X et al (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–390. (PMID: 307781766796840) ; Liu J, Liu Y, Wang S, Cui Y, Yan D (2022) Heat stress reduces root meristem size via induction of plasmodesmal callose accumulation inhibiting phloem unloading in Arabidopsis. Int J Mol Sci 23(4):2063. https://doi.org/10.3390/ijms23042063. (PMID: 10.3390/ijms23042063352161838879574) ; Lohani N, Singh MB, Bhalla PL (2022) Biological parts for engineering abiotic stress tolerance in plants. Biodes Res 2022:9819314. https://doi.org/10.34133/2022/9819314. (PMID: 10.34133/2022/98193143785013010521667) ; Luo H, Xu H, Chu C, He F, Fang S (2020) High temperature can change root system architecture and intensify root interactions of plant seedlings. Front Plant Sci 11:160. https://doi.org/10.3389/fpls.2020.00160. (PMID: 10.3389/fpls.2020.00160321616137054236) ; Luo J, Jiang J, Sun S, Wang X (2022) Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. Plant Commun 3:100419. https://doi.org/10.1016/j.xplc.2022.100419. (PMID: 10.1016/j.xplc.2022.100419359279439700127) ; Lynch J, Cain M, Frame D, Pierrehumbert R (2021) Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO 2 -emitting sectors. Front Sustain Food Syst 4:518039. https://doi.org/10.3389/fsufs.2020.518039. (PMID: 10.3389/fsufs.2020.518039336446957116829) ; Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci U S A 113:224–229. (PMID: 26699514) ; Macduff JH, Wild A, Hopper MJ, Dhanoa MS (1986) Effects of temperature on parameters of root growth relevant to nutrient uptake: measurements on oilseed rape and barley grown in flowing nutrient solution. Plant Soil 94:321–332. ; Mahmud K, Medlyn BE, Duursma RA, Campany C, De Kauwe MG (2018) Inferring the effects of sink strength on plant carbon balance processes from experimental measurements. Biogeosciences 15:4003–4018. ; Malerba M, Crosti P, Cerana R (2010) Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co 2+ . Protoplasma 239:23–30. (PMID: 19876713) ; Martínez C, Espinosa-Ruíz A, Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S (2018) PIF 4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 37(23):e99552. https://doi.org/10.15252/embj.201899552. (PMID: 10.15252/embj.201899552303896696276883) ; Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Le RCP, Ljung K, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8(1):309. https://doi.org/10.1038/s41467-017-00355-4. (PMID: 10.1038/s41467-017-00355-4288276085567177) ; Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H (2018) Stomatal VPD response: there is more to the story than ABA. Plant Physiol 176:851–864. (PMID: 28986421) ; Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125. (PMID: 22236506) ; Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP (2021) The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot 72:2822–2844. (PMID: 336195278023210) ; Morales D, Rodríguez P, Dell’Amico J, Nicolás E, Torrecillas A, Sánchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208. ; Morita S, Wada H, Matsue Y (2016) Countermeasures for heat damage in rice grain quality under climate change. Plant Prod Sci 19:1–11. https://doi.org/10.1080/1343943X.2015.1128114. (PMID: 10.1080/1343943X.2015.1128114) ; Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ (2017) Phospholipid: diacylglycerol acyltransferase-mediated triacylglyerol synthesis augments basal thermotolerance. Plant Physiol 175:486–497. (PMID: 287333915580778) ; Nagel KA, Kastenholz B, Jahnke S et al (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol 36:947–959. (PMID: 32688706) ; Nasti RA, Voytas DF (2021) Attaining the promise of plant gene editing at scale. Proc Natl Acad Sci U S A 118:1–6. ; Nazar R, Iqbal N, Umar S (2017) Heat stress tolerance in plants: action of salicylic acid. In: Salicylic acid: a multifaceted hormone. pp 145–161. ; Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4:371–405. ; Noguchi M, Kodama Y (2022) Temperature sensing in plants: on the dawn of molecular thermosensor research. Plant Cell Physiol 63:737–743. (PMID: 35348773) ; Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809. (PMID: 228203783703456) ; Olas JJ, Apelt F, Annunziata MG, John S, Richard SI, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B (2021) Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol Plant 14:1508–1524. (PMID: 34052393) ; Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2019) Strigolactones and their crosstalk with other phytohormones. Ann Bot 124:749–767. (PMID: 311900746868373) ; Pajoro A, Severing E, Angenent GC, Immink RGH (2017) Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol 18(1):102. https://doi.org/10.1186/s13059-017-1235-x. (PMID: 10.1186/s13059-017-1235-x285660895452352) ; Park E, Kim Y, Choi G (2018) Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. Plant Cell 30:1277–1292. (PMID: 297649866048787) ; Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M (2018) Cytokinin at the crossroads of abiotic stress signalling pathways. Int J Mol Sci 19(8):2450. https://doi.org/10.3390/ijms19082450. (PMID: 10.3390/ijms19082450301262426121657) ; Pecinka A, Scheid OM, Dinh HQ, Baubec T, Rosa M, Lettner N (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129. (PMID: 208768292965555) ; Perrella G, Bäurle I, van Zanten M (2022) Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytol 234:1144–1160. (PMID: 35037247) ; Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038. (PMID: 29138351) ; Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Cano-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146(5):dev151894. (PMID: 308722666432667) ; Pörtner H-O, Roberts DC, Tignor M et al (2022) Climate change 2022: impacts, adaptation and vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report. ; Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917. ; Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L, Zatloukal M, Vankova R (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front Plant Sci 11:87. https://doi.org/10.3389/fpls.2020.00087. (PMID: 10.3389/fpls.2020.00087321330217040172) ; Qaseem MF, Qureshi R, Shaheen H (2019) Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci Rep 9:6955. https://doi.org/10.1038/s41598-019-43477-z. (PMID: 10.1038/s41598-019-43477-z310614446502848) ; Qiu Y, Li M, Kim RJA, Moore CM, Chen M (2019) Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10:140. https://doi.org/10.1038/s41467-018-08059-z. (PMID: 10.1038/s41467-018-08059-z306355596329817) ; Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190. https://doi.org/10.1038/nplants.2015.190. (PMID: 10.1038/nplants.2015.19027250752) ; Ray DK, West PC, Michael C, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS ONE 14(5):e0217148. https://doi.org/10.1371/journal.pone.0217148. (PMID: 10.1371/journal.pone.0217148311504276544233) ; Reed JW, Wu MF, Reeves PH, Hodgens C, Yadav V, Hayes S, Pierik R (2018) Three auxin response factors promote hypocotyl elongation1,2[open]. Plant Physiol 178:864–875. (PMID: 301397946181040) ; Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F (2019) Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiol Plant 165:644–663. (PMID: 29766507) ; Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM (2020) Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 117:33177–33185. (PMID: 333234837776907) ; Rieu I, Twell D, Firon N (2017) Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173:1967–1976. (PMID: 282462965373052) ; Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109:373–389. (PMID: 34482588) ; Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA, Sultmanis S, Sage RF (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crop Res 182:30–42. ; Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843. (PMID: 197733862768932) ; Saidi Y, Peter M, Fink A, Cicekli C, Vigh L, Goloubinoff P (2010) Membrane lipid composition affects plant heat sensing and modulates Ca 2+ -dependent heat shock response. Plant Signal Behav 5:1530–1533. (PMID: 211394233115095) ; Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565. (PMID: 21138439) ; Saini N, Nikalje GC, Zargar SM, Suprasanna P (2022) Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Rep 41:799–813. (PMID: 34676458) ; Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827. (PMID: 170308011693746) ; Samakovli D, Roka L, Plitsi PK, Kaltsa I, Daras G, Milioni D, Hatzopoulos P (2020) Active BR signalling adjusts the subcellular localisation of BES1/HSP90 complex formation. Plant Biol 22:129–133. (PMID: 31469500) ; Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119. (PMID: 22033015) ; Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274. (PMID: 17999647) ; Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S (2019) A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 42:1054–1064. (PMID: 30136402) ; Sezgin Muslu A, Kadioğlu A (2021) The antioxidant defense and glyoxalase systems contribute to the thermotolerance of Heliotropium thermophilum. Funct Plant Biol 48:1241–1253. (PMID: 34600601) ; Shahinnia F, Carrillo N, Hajirezaei MR (2021) Engineering climate-change-resilient crops: new tools and approaches. Int J Mol Sci 22(15):7877. https://doi.org/10.3390/ijms22157877. (PMID: 10.3390/ijms22157877343606458346029) ; Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722. (PMID: 20666927) ; Shekhawat K, Saad MM, Sheikh A, Mariappan K, Al-Mahmoudi H, Abdulhakim F, Eida AA, Jalal R, Masmoudi K, Hirt H (2021) Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Rep 22(3):e51049. https://doi.org/10.15252/embr.202051049. (PMID: 10.15252/embr.202051049334267857926228) ; Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S (2014) Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol 15:R45. https://doi.org/10.1186/gb-2014-15-3-r45. (PMID: 10.1186/gb-2014-15-3-r45245807804053849) ; Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140. (PMID: 307729196395887) ; Sobol S, Chayut N, Nave N, Kafle D, Hegele M, Kaminetsky R, Wünsche JN, Samach A (2014) Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant Cell Environ 37:643–657. (PMID: 23961724) ; Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601. (PMID: 19686536) ; Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21:642–654. (PMID: 192441412660624) ; Sun Y, Fan XY, Cao DM et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777. (PMID: 210747253018842) ; Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF 4 -mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8(3):e1002594. https://doi.org/10.1371/journal.pgen.1002594. (PMID: 10.1371/journal.pgen.1002594224791943315464) ; Suri SS, Dhindsa RS (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ 31:218–226. (PMID: 17996015) ; Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275. (PMID: 18201973) ; Suzuki N, Bassil E, Hamilton JS et al (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 11(1):e0147625. https://doi.org/10.1371/journal.pone.0147625. (PMID: 10.1371/journal.pone.0147625268242464733103) ; Talanova VV, Akimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physiol 50:90–94. ; Tasset C, Singh Yadav A, Sureshkumar S, Singh R, van der Woude L, Nekrasov M, Tremethick D, van Zanten M, Balasubramanian S (2018) POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genet 14(3):e1007280. https://doi.org/10.1371/journal.pgen.1007280. (PMID: 10.1371/journal.pgen.1007280295476725874081) ; Tian X, Wang F, Zhao Y et al (2020) Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotechnol J 18:1109–1111. (PMID: 31559685) ; Tiwari M, Kumar R, Min D, Jagadish SVK (2022) Genetic and molecular mechanisms underlying root architecture and function under heat stress—a hidden story. Plant Cell Environ 45:771–788. (PMID: 35043409) ; Todorov DT, Karanov EN, Smith AR, Hall MA (2003) Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biol Plant 46:633–636. ; Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E (2008) Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol Ecol 17:1614–1626. (PMID: 183212562727869) ; Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response1[OPEN]. Plant Physiol 182:15–26. (PMID: 31685643) ; ul Haq S, Khan A, Ali M, Khattak AM, Gai W-X, Zhang H-X, Wei A-M, Gong Z-H (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20(21):5321. https://doi.org/10.3390/ijms20215321. (PMID: 10.3390/ijms20215321317315306862505) ; Vacca RA, De Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112. (PMID: 15020761389934) ; Van Der Woude LC, Perrella G, Snoek BL et al (2019) HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci U S A 116:25343–25354. (PMID: 317677496911240) ; van Zanten M, Voesenek LACJ, Peeters AJM, Millenaar FF (2009) Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol 151:1446–1458. (PMID: 197410462773053) ; van Zanten M, Ai H, Quint M (2021) Plant thermotropism: an underexplored thermal engagement and avoidance strategy. J Exp Bot 72:7414–7420. ; Velichko AK, Petrova NV, Kantidze OL, Razin SV (2012) Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23:3450–3460. (PMID: 227872763431931) ; Verma N, Giri SK, Singh G, Gill R, Kumar A (2022) Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene 29:100351. https://doi.org/10.1111/nph.17970. (PMID: 10.1111/nph.17970) ; Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746. (PMID: 16897488) ; von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637. ; Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 24:210–219. (PMID: 30573309) ; Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. ; Wall S, Cockram J, Vialet-Chabrand S, Van Rie J, Gallé A, Lawson T (2023) The impact of growth at elevated [CO 2 ] on stomatal anatomy and behavior differs between wheat species and cultivars. J Exp Bot 74:2860–2874. (PMID: 3663386010134898) ; Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269. https://doi.org/10.1038/ncomms10269. (PMID: 10.1038/ncomms10269267283134728404) ; Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244. ; Wing IS, De Cian E, Mistry MN (2021) Global vulnerability of crop yields to climate change. J Environ Econ Manag 109:102462. https://doi.org/10.1016/j.jeem.2021.102462. (PMID: 10.1016/j.jeem.2021.102462) ; Wu HC, Jinn TL (2010) Heat shock-triggered Ca 2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca 2+ oscillation are crucial for plant thermotolerance. Plant Signal Behav 5:1252–1256. (PMID: 209482933115360) ; Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S (2017) Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front Plant Sci 8:371. https://doi.org/10.3389/fpls.2017.00371. (PMID: 10.3389/fpls.2017.00371283671585355447) ; Wu J, Liu P, Liu Y (2023) Thermosensing and thermal responses in plants. Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2023.08.002. (PMID: 10.1016/j.tibs.2023.08.00237839971) ; Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809. (PMID: 203047862871029) ; Yang K, Wang JM (2008) A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci China Ser D Earth Sci 51:721–729. ; Yang X, Dong G, Palaniappan K, Mi G, Baskin TI (2017) Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ 40:264–276. (PMID: 27813107) ; Yang H, Gu X, Ding M, Lu W, Lu D (2018) Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep 8(1):15665. https://doi.org/10.1038/s41598-018-33644-z. (PMID: 10.1038/s41598-018-33644-z303530956199321) ; Yang L, Machin F, Wang S, Saplaoura E, Kragler F (2023) Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat Biotechnol 41:958–967. (PMID: 3659341510344777) ; Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23. (PMID: 229209953430125) ; Yoshida T, Ohama N, Nakajima J et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332. (PMID: 21931939) ; Zafar K, Sedeek KEM, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mansoor S, Mahfouz MM (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Edit 2:5. https://doi.org/10.3389/fgeed.2020.00005. (PMID: 10.3389/fgeed.2020.00005) ; Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020) Systemic signaling during abiotic stress combination in plants. Proc Natl Acad Sci U S A 117:13810–13820. (PMID: 324719437306788) ; Zha P, Jing Y, Xu G, Lin R (2017) PICKLE chromatin-remodeling factor controls thermosensory hypocotyl growth of Arabidopsis. Plant, Cell Environ 40:2426–2436. (PMID: 28771755) ; Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam MR, Jin Q, Tao L, Fu G (2018) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11(1):14. https://doi.org/10.1186/s12284-018-0206-5. (PMID: 10.1186/s12284-018-0206-5295321875847639) ; Zhang X, Wang X, Zhuang L, Gao Y, Huang B (2019) Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiol Plant 167:488–501. (PMID: 30977137) ; Zhang Y, Li Y, Han B, Liu A, Xu W (2022) Integrated lipidomic and transcriptomic analysis reveals triacylglycerol accumulation in castor bean seedlings under heat stress. Ind Crops Prod 180:114702. https://doi.org/10.1016/j.indcrop.2022.114702. (PMID: 10.1016/j.indcrop.2022.114702) ; Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331. (PMID: 288113755584412) ; Zhao LS, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux CW, Zhang YZ, Liu LN (2020) Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat Plants 6:869–882. (PMID: 32665651) ; Zhao J, Lu Z, Wang L, Jin B (2021) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22(1):117. https://doi.org/10.3390/ijms22010117. (PMID: 10.3390/ijms22010117) ; Zhou J, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) RBOH1-dependent H 2 O 2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. J Exp Bot 65:595–607. (PMID: 24323505) ; Zhu T, Fonseca De Lima CF, De Smet I (2021) The heat is on: how crop growth, development, and yield respond to high temperature. J Exp Bot 72:7359–7373. ; Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M (2022) An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. J Exp Bot 74:2912–2931. ; Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. (PMID: 203510192917059)
  • Grant Information: Ramalingaswami fellowship program Department of Biotechnology (DBT), Government of India
  • Contributed Indexing: Keywords: Agriculture productivity; Climate change; Climate resilience; Food security; Global warming; Heat stress; Thermomorphogenesis
  • Entry Date(s): Date Created: 20240101 Date Completed: 20240103 Latest Revision: 20240119
  • Update Code: 20240120

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -