Zum Hauptinhalt springen

Machine learning models to predict the warfarin discharge dosage using clinical information of inpatients from South Korea.

Choi, H ; Kang, HJ ; et al.
In: Scientific reports, Jg. 13 (2023-12-18), Heft 1, S. 22461
Online academicJournal

Titel:
Machine learning models to predict the warfarin discharge dosage using clinical information of inpatients from South Korea.
Autor/in / Beteiligte Person: Choi, H ; Kang, HJ ; Ahn, I ; Gwon, H ; Kim, Y ; Seo, H ; Cho, HN ; Han, J ; Kim, M ; Kee, G ; Park, S ; Kwon, O ; Roh, JH ; Kim, AR ; Kim, JH ; Jun, TJ ; Kim, YH
Link:
Zeitschrift: Scientific reports, Jg. 13 (2023-12-18), Heft 1, S. 22461
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2023
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-023-49831-6
Schlagwort:
  • Adult
  • Humans
  • Retrospective Studies
  • Inpatients
  • Anticoagulants adverse effects
  • Machine Learning
  • Warfarin adverse effects
  • Patient Discharge
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Sci Rep] 2023 Dec 18; Vol. 13 (1), pp. 22461. <i>Date of Electronic Publication: </i>2023 Dec 18.
  • MeSH Terms: Warfarin* / adverse effects ; Patient Discharge* ; Adult ; Humans ; Retrospective Studies ; Inpatients ; Anticoagulants / adverse effects ; Machine Learning
  • References: Pirmohamed, M. Warfarin: Almost 60 years old and still causing problems. Br. J. Clin. Pharmacol. 62, 509 (2006). (PMID: 10.1111/j.1365-2125.2006.02806.x170619591885167) ; Pirmohamed, M., Kamali, F., Daly, A. K. & Wadelius, M. Oral anticoagulation: A critique of recent advances and controversies. Trends Pharmacol. Sci. 36, 153–163 (2015). (PMID: 10.1016/j.tips.2015.01.00325698605) ; Glurich, I., Burmester, J. K. & Caldwell, M. D. Understanding the pharmacogenetic approach to warfarin dosing. Heart Fail. Rev. 15, 239–248 (2010). (PMID: 10.1007/s10741-008-9115-918998206) ; Gage, B. F., Fihn, S. D. & White, R. H. Management and dosing of warfarin therapy. Am. J. Med. 109, 481–488 (2000). (PMID: 10.1016/S0002-9343(00)00545-311042238) ; Gage, B. et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 84, 326–331 (2008). (PMID: 10.1038/clpt.2008.1018305455) ; Pavani, A. et al. Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization. Pharmacogenomics 17, 121–131 (2016). (PMID: 10.2217/pgs.15.16126666467) ; Roche-Lima, A. et al. Machine learning algorithm for predicting warfarin dose in caribbean hispanics using pharmacogenetic data. Front. Pharmacol. 10, 1550 (2020). (PMID: 10.3389/fphar.2019.01550320382386987072) ; Tong, H. Y. et al. A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a mixed spanish population. PLoS ONE 11, e0150456 (2016). (PMID: 10.1371/journal.pone.0150456269779274792430) ; Grossi, E. et al. Prediction of optimal warfarin maintenance dose using advanced artificial neural networks. Pharmacogenomics 15, 29–37 (2014). (PMID: 10.2217/pgs.13.21224329188) ; Saleh, M. I. & Alzubiedi, S. Dosage individualization of warfarin using artificial neural networks. Mol. Diagn. Ther. 18, 371–379 (2014). (PMID: 10.1007/s40291-014-0090-724574079) ; Hernandez, W. et al. Ethnicity-specific pharmacogenetics: The case of warfarin in African Americans. Pharmacogenom. J. 14, 223–228 (2014). (PMID: 10.1038/tpj.2013.34) ; Alzubiedi, S. & Saleh, M. I. Pharmacogenetic-guided warfarin dosing algorithm in African–Americans. J. Cardiovasc. Pharmacol. 67, 86–92 (2016). (PMID: 10.1097/FJC.000000000000031726355760) ; Martes-Martinez, C. et al. Cost-utility study of warfarin genotyping in the Vachs affiliated anticoagulation clinic of Puerto Rico. P. R. Health Sci. J. 36, 165–172 (2017). (PMID: 289153065993426) ; Hu, Y.-H., Wu, F., Lo, C.-L. & Tai, C.-T. Predicting warfarin dosage from clinical data: A supervised learning approach. Artif. Intell. Med. 56, 27–34 (2012). (PMID: 10.1016/j.artmed.2012.04.00122537823) ; Johnson, A. et al. Mimic-iii, a freely accessible critical care database sci. Data 3, 10–1038 (2016). ; Willmott, C. J. & Matsuura, K. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim. Res. 30, 79–82 (2005). (PMID: 10.3354/cr030079) ; Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016). (PMID: 10.1016/j.jcm.2016.02.012273305204913118) ; Shin, S.-Y. et al. Lessons learned from development of de-identification system for biomedical research in a Korean tertiary hospital. Healthc. Inf. Res. 19, 102–109 (2013). (PMID: 10.4258/hir.2013.19.2.102) ; McDonald, M., Au, N., Wittkowsky, A. & Rettie, A. Warfarin-amiodarone drug-drug interactions: determination of [i] u/ki, u for amiodarone and its plasma metabolites. Clin. Pharmacol. Ther. 91, 709–717 (2012). (PMID: 10.1038/clpt.2011.28322398967) ; Nutescu, E., Chuatrisorn, I. & Hellenbart, E. Drug and dietary interactions of warfarin and novel oral anticoagulants: An update. J. Thromb. Thrombolysis 31, 326–343 (2011). (PMID: 10.1007/s11239-011-0561-121359645) ; Greenblatt, D. J. & von Moltke, L. L. Interaction of warfarin with drugs, natural substances, and foods. J. Clin. Pharmacol. 45, 127–132 (2005). (PMID: 10.1177/009127000427140415647404) ; Kean, M., Krueger, K., Parkhurst, B., Berg, R. & Griesbach, S. Assessment of potential drug interactions that may increase the risk of major bleeding events in patients on warfarin maintenance therapy. J. Pharm. Soc. Wis. 21, 44–8 (2018). ; Limdi, N. A. et al. Warfarin dosing in patients with impaired kidney function. Am. J. Kidney Dis. 56, 823–831 (2010). (PMID: 10.1053/j.ajkd.2010.05.023207094392963672) ; Gulløv, A. L., Koefoed, B. G. & Petersen, P. Bleeding during warfarin and aspirin therapy in patients with atrial fibrillation: The afasak 2 study. Arch. Intern. Med. 159, 1322–1328 (1999). (PMID: 10.1001/archinte.159.12.132210386508) ; Dumo, P. A. & Kielbasa, L. A. Successful anticoagulation and continuation of tramadol therapy in the setting of a tramadol-warfarin interaction. Pharmacother. J. Hum. Pharmacol. Drug Ther. 26, 1654–1657 (2006). ; Daly, A. K. Pharmacogenomics of anticoagulants: Steps toward personal dosage. Genome Med. 1, 1–4 (2009). (PMID: 10.1186/gm10) ; Venables, W. N., Ripley, B. D., Venables, W. & Ripley, B. Tree-based methods. Mod. Appl. Stat. S-Plus 303–327 (1999). ; Patro, S. & Sahu, K. K. Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462 (2015). ; Jain, A. K., Mao, J. & Mohiuddin, K. M. Artificial neural networks: A tutorial. Computer 29, 31–44 (1996). (PMID: 10.1109/2.485891) ; Yan, X. & Su, X. Linear regression analysis: theory and computing (world scientific, 2009). ; Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785–794 (2016). ; Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). (PMID: 10.1023/A:1010933404324) ; LaValle, S. M., Branicky, M. S. & Lindemann, S. R. On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 23, 673–692 (2004). (PMID: 10.1177/0278364904045481) ; James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical learning, vol. 112 (Springer, 2013). ; Peng, C.-Y.J., Lee, K. L. & Ingersoll, G. M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 96, 3–14 (2002). (PMID: 10.1080/00220670209598786) ; Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018). ; Arrieta, A. B. et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Inf. Fusion 58, 82–115 (2020). (PMID: 10.1016/j.inffus.2019.12.012) ; Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420 (1979). (PMID: 10.1037/0033-2909.86.2.42018839484) ; Ravvaz, K., Weissert, J. A., Ruff, C. T., Chi, C.-L. & Tonellato, P. J. Personalized anticoagulation: Optimizing warfarin management using genetics and simulated clinical trials. Circ. Cardiovasc. Genet. 10, e001804 (2017). ; Li, X. et al. Precision dosing of warfarin: Open questions and strategies. Pharmacogenom. J. 19, 219–229 (2019). (PMID: 10.1038/s41397-019-0083-3) ; Bussey, H. I., Wittkowsky, A. K., Hylek, E. M. & Walker, M. B. Genetic testing for warfarin dosing? Not yet ready for prime time (2008). ; Kuruvilla, M. & Gurk-Turner, C. A review of warfarin dosing and monitoring. Baylor Univ. Med. Center Proc. 14, 305–306 (2001). (PMID: 10.1080/08998280.2001.11927781)
  • Substance Nomenclature: 5Q7ZVV76EI (Warfarin) ; 0 (Anticoagulants)
  • Entry Date(s): Date Created: 20231217 Date Completed: 20231219 Latest Revision: 20231227
  • Update Code: 20231227
  • PubMed Central ID: PMC10725866

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -