Zum Hauptinhalt springen

Kinetic-pharmacodynamic model of warfarin for prothrombin time-international normalized ratio in Japanese patients.

Hirai, T ; Aoyama, T ; et al.
In: British journal of clinical pharmacology, Jg. 90 (2024-03-01), Heft 3, S. 828-836
Online academicJournal

Titel:
Kinetic-pharmacodynamic model of warfarin for prothrombin time-international normalized ratio in Japanese patients.
Autor/in / Beteiligte Person: Hirai, T ; Aoyama, T ; Tsuji, Y ; Itoh, T ; Matsumoto, Y ; Iwamoto, T
Link:
Zeitschrift: British journal of clinical pharmacology, Jg. 90 (2024-03-01), Heft 3, S. 828-836
Veröffentlichung: Oxford : Wiley-Blackwell ; <i>Original Publication</i>: London, Macmillan Journals Ltd., 2024
Medientyp: academicJournal
ISSN: 1365-2125 (electronic)
DOI: 10.1111/bcp.15967
Schlagwort:
  • Adult
  • Humans
  • Cytochrome P-450 CYP2C9 genetics
  • Genotype
  • International Normalized Ratio
  • Japan
  • Prothrombin
  • Prothrombin Time
  • Retrospective Studies
  • Vitamin K Epoxide Reductases genetics
  • Anticoagulants pharmacokinetics
  • Warfarin pharmacokinetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Br J Clin Pharmacol] 2024 Mar; Vol. 90 (3), pp. 828-836. <i>Date of Electronic Publication: </i>2023 Dec 10.
  • MeSH Terms: Anticoagulants* / pharmacokinetics ; Warfarin* / pharmacokinetics ; Adult ; Humans ; Cytochrome P-450 CYP2C9 / genetics ; Genotype ; International Normalized Ratio ; Japan ; Prothrombin ; Prothrombin Time ; Retrospective Studies ; Vitamin K Epoxide Reductases / genetics
  • References: Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke. 2006;37(1):256-262. doi:10.1161/01.STR.0000196989.09900.f8. ; Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72(6):702-710. doi:10.1067/mcp.2002.129321. ; Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329-2333. doi:10.1182/blood-2005-03-1108. ; Reynolds MW, Fahrbach K, Hauch O, et al. Warfarin anticoagulation and outcomes in patients with atrial fibrillation: a systematic review and metaanalysis. Chest. 2004;126(6):1938-1945. doi:10.1378/chest.126.6.1938. ; Verhoef TI, Redekop WK, Daly AK, van Schie RM, de Boer A, Maitland-van der Zee AH. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol. 2014;77(4):626-641. doi:10.1111/bcp.12220. ; Darwich AS, Ogungbenro K, Vinks AA, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646-656. doi:10.1002/cpt.659. ; Hamberg AK, Wadelius M, Lindh JD, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87(6):727-734. doi:10.1038/clpt.2010.37. ; Aoyama T, Hirai T, Tsuji Y, et al. External evaluation of a Bayesian warfarin dose optimization based on a kinetic-pharmacodynamic model. Biol Pharm Bull. 2022;45(1):136-142. doi:10.1248/bpb.b21-00778. ; Hirai T, Hamada Y, Geka Y, et al. A retrospective study on the risk factors for bleeding events in warfarin therapy, focusing on renal function. Eur J Clin Pharmacol. 2017;73(11):1491-1497. doi:10.1007/s00228-017-2316-1. ; Wieloch M, Jönsson KM, Själander A, Lip GY, Eriksson N, Svensson PJ. Estimated glomerular filtration rate is associated with major bleeding complications but not thromboembolic events, in anticoagulated patients taking warfarin. Thromb Res. 2013;131(6):481-486. doi:10.1016/j.thromres.2013.01.006. ; Hart R, Veenstra DL, Boudreau DM, Roth JA. Impact of body mass index and genetics on warfarin major bleeding outcomes in a community setting. Am J Med. 2017;130(2):222-228. doi:10.1016/j.amjmed.2016.08.017. ; Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58(2):119-133. doi:10.1111/j.1365-2125.2004.02157.x. ; Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982-992. doi:10.1053/j.ajkd.2008.12.034. ; Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67(6):2089-2100. doi:10.1111/j.1523-1755.2005.00365.x. ; Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29(5/6):473-505. doi:10.1023/A:1022972420004. ; Chan Kwong AHP, Calvier EAM, Fabre D, Gattacceca F, Khier S. Prior information for population pharmacokinetic and pharmacokinetic/pharmacodynamic analysis: overview and guidance with a focus on the NONMEM PRIOR subroutine. J Pharmacokinet Pharmacodyn. 2020;47(5):431-446. doi:10.1007/s10928-020-09695-z. ; Ono K, Iwasaki YK, Akao M, et al. JCS/JHRS 2020 guideline on pharmacotherapy of cardiac arrhythmias. Circ J. 2022;86(11):1790-1924. doi:10.1253/circj.CJ-20-1212. ; Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83(3):460-470. doi:10.1038/sj.clpt.6100316. ; Burmester JK, Berg RL, Yale SH, et al. A randomized controlled trial of genotype-based Coumadin initiation. Genet Med. 2011;13(6):509-518. doi:10.1097/GIM.0b013e31820ad77d. ; Anderson JL, Horne BD, Stevens SM, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125(16):1997-2005. doi:10.1161/CIRCULATIONAHA.111.070920. ; Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283-2293. doi:10.1056/NEJMoa1310669. ; Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784-792. doi:10.1182/blood-2008-04-149070. ; Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5(3):193-202. doi:10.1038/sj.tpj.6500308. ; Jensen BP, Chin PK, Roberts RL, Begg EJ. Influence of adult age on the total and free clearance and protein binding of (R)- and (S)-warfarin. Br J Clin Pharmacol. 2012;74(5):797-805. doi:10.1111/j.1365-2125.2012.04259.x. ; Wallace JL, Reaves AB, Tolley EA, et al. Comparison of initial warfarin response in obese patients versus non-obese patients. J Thromb Thrombolysis. 2013;36(1):96-101. doi:10.1007/s11239-012-0811-x. ; Mueller JA, Patel T, Halawa A, Dumitrascu A, Dawson NL. Warfarin dosing and body mass index. Ann Pharmacother. 2014;48(5):584-588. doi:10.1177/1060028013517541. ; Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost. 2006;95(5):782-787. doi:10.1160/TH05-10-0678. ; Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326-331. doi:10.1038/clpt.2008.10. ; Lenzini P, Wadelius M, Kimmel S, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572-578. doi:10.1038/clpt.2010.13. ; Ay L, Kopp HP, Brix JM, et al. Thrombin generation in morbid obesity: significant reduction after weight loss. J Thromb Haemost. 2010;8(4):759-765. doi:10.1111/j.1538-7836.2010.03766.x. ; Kawai M, Harada M, Motoike Y, et al. Impact of serum albumin levels on supratherapeutic PT-INR control and bleeding risk in atrial fibrillation patients on warfarin: a prospective cohort study. Int J Cardiol Heart Vasc. 2019;22:111-116. doi:10.1016/j.ijcha.2019.01.002. ; Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115-121. doi:10.1067/mcp.2002.121829. ; Gong IY, Schwarz UI, Crown N, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS ONE. 2011;6(11):e27808. doi:10.1371/journal.pone.0027808. ; Tan ML, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther. 2018;103(5):854-867. doi:10.1002/cpt.807. ; Ichihara N, Ishigami T, Umemura S. Effect of impaired renal function on the maintenance dose of warfarin in Japanese patients. J Cardiol. 2015;65(3):178-184. doi:10.1016/j.jjcc.2014.08.008. ; Limdi NA, Nolin TD, Booth SL, et al. Influence of kidney function on risk of supratherapeutic international normalized ratio-related hemorrhage in warfarin users: a prospective cohort study. Am J Kidney Dis. 2015;65(5):701-709. doi:10.1053/j.ajkd.2014.11.004. ; Holden RM, Morton AR, Garland JS, Pavlov A, Day AG, Booth SL. Vitamins K and D status in stages 3-5 chronic kidney disease. Clin J am Soc Nephrol. 2010;5(4):590-597. doi:10.2215/CJN.06420909. ; Elliott MJ, Booth SL, Hopman WM, Holden RM. Assessment of potential biomarkers of subclinical vitamin K deficiency in patients with end-stage kidney disease. Can J Kidney Health Dis. 2014;1:13. doi:10.1186/2054-3581-1-13. ; Limdi NA, Brown TM, Yan Q, et al. Race influences warfarin dose changes associated with genetic factors. Blood. 2015;126(4):539-545. doi:10.1182/blood-2015-02-627042.
  • Grant Information: JP20K16092 Japan Society for the Promotion of Science
  • Contributed Indexing: Keywords: model-informed precision dosing; pharmacometrics; prothrombin time-international normalized ratio; renal function; warfarin
  • Substance Nomenclature: 0 (Anticoagulants) ; EC 1.14.13.- (Cytochrome P-450 CYP2C9) ; 9001-26-7 (Prothrombin) ; EC 1.17.4.4 (Vitamin K Epoxide Reductases) ; 5Q7ZVV76EI (Warfarin)
  • Entry Date(s): Date Created: 20231113 Date Completed: 20240229 Latest Revision: 20240305
  • Update Code: 20240305

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -