Zum Hauptinhalt springen

Global warming is projected to lead to increased freshwater growth potential and changes in pace of life in Atlantic salmon Salmo salar.

Rinaldo, A ; de Eyto E ; et al.
In: Journal of fish biology, Jg. 104 (2024-03-01), Heft 3, S. 647-661
Online academicJournal

Titel:
Global warming is projected to lead to increased freshwater growth potential and changes in pace of life in Atlantic salmon Salmo salar.
Autor/in / Beteiligte Person: Rinaldo, A ; de Eyto E ; Reed, T ; Gjelland, KØ ; McGinnity, P
Link:
Zeitschrift: Journal of fish biology, Jg. 104 (2024-03-01), Heft 3, S. 647-661
Veröffentlichung: 2003- : Oxford, UK : Blackwell Publishing ; <i>Original Publication</i>: London, New York, Published for the Fisheries Society of the British Isles by Academic Press., 2024
Medientyp: academicJournal
ISSN: 1095-8649 (electronic)
DOI: 10.1111/jfb.15603
Schlagwort:
  • Animals
  • Rivers
  • Animal Migration physiology
  • Fresh Water
  • Water
  • Global Warming
  • Salmo salar
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Fish Biol] 2024 Mar; Vol. 104 (3), pp. 647-661. <i>Date of Electronic Publication: </i>2023 Nov 23.
  • MeSH Terms: Global Warming* ; Salmo salar* ; Animals ; Rivers ; Animal Migration / physiology ; Fresh Water ; Water
  • References: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016. ; Angilletta, M. J., Steury, T. D., & Sears, M. W. (2004). Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44(6), 498-509. https://doi.org/10.1093/icb/44.6.498. ; Ashton, K. G. (2004). Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integrative and Comparative Biology, 44(6), 403-412. https://doi.org/10.1093/icb/44.6.403. ; Atkinson, D. (1994). Temperature and organism size-A biological law for ectotherms? In M. Begon, & A. H. Fitter (Eds.), Advances in ecological research (Vol. 25, pp. 1-58). https://doi.org/10.1016/S0065-2504(08)60212-3. ; Barneche, D. R., Ross Robertson, D., White, C. R., & Marshall, D. J. (2018). Fish reproductive-energy output increases disproportionately with body size. Science, 360, 642-645. https://doi.org/10.1126/science.aao6868. ; Bennett, J. M., Sunday, J., Calosi, P., Villalobos, F., Martínez, B., Molina-Venegas, R., Araújo, M. B., Algar, A. C., Clusella-Trullas, S., Hawkins, B. A., Keith, S. A., Kühn, I., Rahbek, C., Rodríguez, L., Singer, A., Morales-Castilla, I., & Olalla-Tárraga, M. Á. (2021). The evolution of critical thermal limits of life on earth. Nature Communications, 12(1), 1198. https://doi.org/10.1038/s41467-021-21263-8. ; Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: A clarification of Bergmann's rule. Diversity and Distributions, 5(4), 165-174. https://doi.org/10.1046/j.1472-4642.1999.00046.x. ; Bradshaw, W. E., & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312(5779), 1477-1478. https://doi.org/10.1126/science.1127000. ; Chezik, K. A., Lester, N. P., & Venturelli, P. A. (2014). Fish growth and degree-days I: Selecting a base temperature for a within-population study. Canadian Journal of Fisheries and Aquatic Sciences, 71(1), 47-55. https://doi.org/10.1139/cjfas-2013-0295. ; Chollet, F. (2013). Keras. Journal of Chemical Information and Modeling, 53(9). https://keras.io. ; Crozier, L. G., Hendry, A. P., Lawson, P. W., Quinn, T. P., Mantua, N. J., Battin, J., Shaw, R. G., & Huey, R. B. (2008). Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evolutionary Applications, 1(2), 252-270. https://doi.org/10.1111/j.1752-4571.2008.00033.x. ; de Eyto, E., Kelly, S., Rogan, G., French, A., Cooney, J., Murphy, M., Nixon, P., Hughes, P., Sweeney, D., & McGInnity, P. (2022). Decadal trends in the migration phenology of diadromous fishes native to the Burrishoole catchment, Ireland. Frontiers in Ecology and Evolution, 640, 19. https://doi.org/10.3389/fevo.2022.915854. ; Debes, P. V., Piavchenko, N., Erkinaro, J., & Primmer, C. R. (2020). Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proceedings of the Royal Society B: Biological Sciences, 287(1931), 20200867. https://doi.org/10.1098/rspb.2020.0867. ; Einum, S., & Fleming, I. A. (2004). Does within-population variation in egg size reduce intraspecific competition in Atlantic Salmon, Salmo salar? Functional Ecology, 18(1), 110-115. https://doi.org/10.1111/j.1365-2435.2004.00824.x. ; Elliott, J. M. (1991). Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwater Biology, 25(1), 61-70. https://doi.org/10.1111/j.1365-2427.1991.tb00473.x. ; Elliott, J. M., & Elliott, J. A. (2010). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. Journal of Fish Biology, 77(8), 1793-1817. https://doi.org/10.1111/j.1095-8649.2010.02762.x. ; Elliott, J. M., & Hurley, M. A. (1997). A functional model for maximum growth of Atlantic Salmon parr, Salmo salar, from two populations in Northwest England. Functional Ecology, 11(5), 592-603. https://doi.org/10.1046/j.1365-2435.1997.00130.x. ; Feigl, M., Lebiedzinski, K., Herrnegger, M., & Schulz, K. (2021). Machine-learning methods for stream water temperature prediction. Hydrology and Earth System Sciences, 25(5), 2951-2977. https://doi.org/10.5194/hess-25-2951-2021. ; Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., … Yamagata, Y. (2017). Assessing the impacts of 1.5 C global warming - Simulation protocol of the inter-sectoral impact model Intercomparison project (ISIMIP2b). Geoscientific Model Development, 10(12), 4321-4345. https://doi.org/10.5194/gmd-10-4321-2017. ; Greene, C. M., Hall, J. E., Guilbault, K. R., & Quinn, T. P. (2010). Improved viability of populations with diverse life-history portfolios. Biology Letters, 6(3), 382-386. https://doi.org/10.1098/rsbl.2009.0780. ; Gregory, S. D., Ibbotson, A. T., Riley, W. D., Nevoux, M., Lauridsen, R. B., Russell, I. C., Britton, J. R., Gillingham, P. K., Simmons, O. M., Rivot, E., & Durif, C. (2019). Atlantic salmon return rate increases with smolt length. ICES Journal of Marine Science, 76(6), 1702-1712. https://doi.org/10.1093/icesjms/fsz066. ; Hazel, J. R., & Prosser, C. L. (1974). Molecular mechanisms of temperature compensation in poikilotherms. Physiological Reviews, 54(3), 620-677. https://doi.org/10.1152/physrev.1974.54.3.620. ; Hedger, R. D., Sundt-Hansen, L. E., Forseth, T., Ugedal, O., Diserud, O. H., Kvambekk, Å. S., & Finstad, A. G. (2013). Predicting climate change effects on subarctic-arctic populations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 159-168. https://doi.org/10.1139/cjfas-2012-0205. ; Humphries, M. M., Thomas, D. W., & Speakman, J. R. (2002). Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418(6895), 313-316. https://doi.org/10.1038/nature00828. ; ICES. (2022). Working Group on North Atlantic Salmon (WGNAS). https://doi.org/10.17895/ices.pub.7923. ; IPCC. (2022). IPCC, 2022: Summary for policy makers. In Climate change 2022: Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change. ; Jensen, A. J., Johnsen, B. O., & Heggberget, T. G. (1991). Initial feeding time of Atlantic salmon, Salmo salar, alevins compared to river flow and water temperature in Norwegian streams. Environmental Biology of Fishes, 30(4), 379-385. https://doi.org/10.1007/BF02027981. ; Jonsson, B., & Jonsson, N. (2009). A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. In. Journal of Fish Biology, 75(10), 2381-2447. https://doi.org/10.1111/j.1095-8649.2009.02380.x. ; Jonsson, N., & Jonsson, B. (2007). Sea growth, smolt age and age at sexual maturation in Atlantic salmon. Journal of Fish Biology, 71(1), 245-252. https://doi.org/10.1111/j.1095-8649.2007.01488.x. ; Kadri, S., Mitchell, D. F., Metcalfe, N. B., Huntingford, F. A., & Thorpe, J. E. (1996). Differential patterns of feeding and resource accumulation in maturing and immature Atlantic salmon, Salmo salar. Aquaculture, 142(3-4), 245-257. https://doi.org/10.1016/0044-8486(96)01258-6. ; Klemetsen, A., Amundsen, P. A., Dempson, J. B., Jonsson, B., Jonsson, N., O'Connell, M. F., & Mortensen, E. (2003). Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Wiley online. Library, 12(1), 1-59. https://doi.org/10.1034/j.1600-0633.2003.00010.x%4010.1111/%28ISSN%291600-0633.Editors-Choice-2011. ; Kristinsson, J. B., Saunders, R. L., & Wiggs, A. J. (1985). Growth dynamics during the development of bimodal length-frequency distribution in juvenile Atlantic salmon (Salmo salar L.). Aquaculture, 45(1-4), 1-20. https://doi.org/10.1016/0044-8486(85)90254-6. ; MacCrimmon, H. R., & Gots, B. L. (1979). World distribution of Atlantic Salmon, Salmo salar. Journal of the Fisheries Research Board of Canada, 36(4), 422-457. https://doi.org/10.1139/f79-062. ; Marine Institute. (2020). Newport research facility, annual report No. 65, 2020. Marine Institute https://oar.marine.ie/bitstream/handle/10793/1672/Newport%20Annual%20Report%202019.pdf?sequence=1&isAllowed=y. ; McGinnity, P., Jennings, E., DeEyto, E., Allott, N., Samuelsson, P., Rogan, G., Whelan, K., & Cross, T. (2009). Impact of naturally spawning captive-bred Atlantic salmon on wild populations: Depressed recruitment and increased risk of climate-mediated extinction. Proceedings of the Royal Society B: Biological Sciences, 276(1673), 3601-3610. https://doi.org/10.1098/rspb.2009.0799. ; McGinnity, P., Stone, C., Taggart, J. B., Cooke, D., Cotter, D., Hynes, R., McCamley, C., Cross, T., & Ferguson, A. (1997). Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: Use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES Journal of Marine Science, 54(6), 998-1008. https://doi.org/10.1016/s1054-3139(97)80004-5. ; Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213-241. https://doi.org/10.1007/s10584-011-0156-z. ; Metcalfe, N. B. (1998). The interaction between behavior and physiology in determining life history patterns in Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 55(S1), 93-103. https://doi.org/10.1139/cjfas-55-s1-93. ; Metcalfe, N. B., & Thorpe, J. E. (1990). Determinants of geographical variation in the age of seaward-migrating Salmon, Salmo salar. The Journal of Animal Ecology, 59(1), 135. https://doi.org/10.2307/5163. ; Metcalfe, N. B., & Thorpe, J. E. (1992). Anorexia and defended energy levels in over-wintering juvenile Salmon. The Journal of Animal Ecology, 61(1), 175. https://doi.org/10.2307/5520. ; Mobley, K. B., Aykanat, T., Czorlich, Y., House, A., Kurko, J., Miettinen, A., Moustakas-Verho, J., Salgado, A., Sinclair-Waters, M., Verta, J. P., & Primmer, C. R. (2021). Maturation in Atlantic salmon (Salmo salar, Salmonidae): A synthesis of ecological, genetic, and molecular processes. In. Reviews in Fish Biology and Fisheries, 31(3), 523-571. https://doi.org/10.1007/s11160-021-09656-w. ; Mobley, K. B., Granroth-Wilding, H., Ellmén, M., Orell, P., Erkinaro, J., & Primmer, C. R. (2020). Time spent in distinct life history stages has sex-specific effects on reproductive fitness in wild Atlantic salmon. Molecular Ecology, 29(6), 1173-1184. https://doi.org/10.1111/mec.15390. ; Neuheimer, A. B., & Taggart, C. T. (2007). The growing degree-day and fish size-at-age: The overlooked metric. Canadian Journal of Fisheries and Aquatic Sciences, 64(2), 375-385. https://doi.org/10.1139/F07-003. ; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825-2830. ; Piggins, D. J., & Mills, C. P. R. (1985). Comparative aspects of the biology of naturally produced and hatchery-reared Atlantic salmon smolts (Salmo salar L.). Aquaculture, 45(1-4), 321-333. https://doi.org/10.1016/0044-8486(85)90278-9. ; Piou, C., & Prévost, E. (2012). A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity. Ecological Modelling, 231, 37-52. https://doi.org/10.1016/j.ecolmodel.2012.01.025. ; Power, G. (1981). Stock characteristics and catches of Atlantic Salmon (Salmo salar) in Quebec, and Newfoundland and Labrador in relation to environmental variables. Canadian Journal of Fisheries and Aquatic Sciences, 38(12), 1601-1611. https://doi.org/10.1139/f81-210. ; Power, G. (1986). Physical influences on age at maturity of Atlantic salmon (Salmo salar): A synthesis of ideas and questions. In D. J. Meerburg (Ed.), Salmonid age at maturity. Canadian Special Publication of Fisheries and Aquatic Sciences (Vol. 89, pp. 97-101). ; Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C., Adamík, P., Adriaensen, F., Ahola, M. P., Arcese, P., Miguel Avilés, J., Balbontin, J., Berg, K. S., Borras, A., Burthe, S., Clobert, J., Dehnhard, N., de Lope, F., Dhondt, A. A., … Kramer-Schadt, S. (2019). Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 10(1), 14. https://doi.org/10.1038/s41467-019-10924-4. ; Reed, T. E., Schindler, D. E., Hague, M. J., Patterson, D. A., Meir, E., Waples, R. S., & Hinch, S. G. (2011). Time to evolve? Potential evolutionary responses of Fraser river sockeye salmon to climate change and effects on persistence. PLoS One, 6(6), e20380. https://doi.org/10.1371/journal.pone.0020380. ; Reed, T. E., Schindler, D. E., & Waples, R. S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology, 25(1), 56-63. https://doi.org/10.1111/j.1523-1739.2010.01552.x. ; Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009. ; Russell, I. C., Aprahamian, M. W., Barry, J., Davidson, I. C., Fiske, P., Ibbotson, A. T., Kennedy, R. J., MacLean, J. C., Moore, A., Otero, J., Potter, T., & Todd, C. D. (2012). The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES Journal of Marine Science, 69(9), 1563-1573. https://doi.org/10.1093/icesjms/fsr208. ; Saunders, R. L., Duston, J., & Benfey, T. J. (1994). Environmental and biological factors affecting growth dynamics in relation to smolting of Atlantic salmon, Salmo salar L. Aquaculture Research, 25(1), 9-20. https://doi.org/10.1111/j.1365-2109.1994.tb00662.x. ; Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609-612. https://doi.org/10.1038/nature09060. ; Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. SciPy. https://doi.org/10.25080/majora-92bf1922-011. ; Sears, M. W., & Angilletta, M. J. (2011). Introduction to the symposium: Responses of organisms to climate change: A synthetic approach to the role of thermal adaptation. Integrative and Comparative Biology, 51(5), 662-665. https://doi.org/10.1093/icb/icr113. ; Skilbrei, O. T. (1988). Growth pattern of pre-smolt Atlantic salmon (Salmo salar L.): The percentile increment method (PIM) as a new method to estimate length-dependent growth. Aquaculture, 69(1-2), 129-143. https://doi.org/10.1016/0044-8486(88)90192-5. ; Skoglund, H., Einum, S., Forseth, T., & Barlaup, B. T. (2011). Phenotypic plasticity in physiological status at emergence from nests as a response to temperature in Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 68(8), 1470-1479. https://doi.org/10.1139/f2011-056. ; Sundt-Hansen, L. E., Hedger, R. D., Ugedal, O., Diserud, O. H., Finstad, A. G., Sauterleute, J. F., Tøfte, L., Alfredsen, K., & Forseth, T. (2018). Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers. Science of the Total Environment, 631-632, 1005-1017. https://doi.org/10.1016/j.scitotenv.2018.03.058. ; Thorpe, J. E., Mangel, M., Metcalfe, N. B., & Huntingford, F. A. (1998). Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evolutionary Ecology, 12(5), 581-599. https://doi.org/10.1023/A:1022351814644. ; Thorstad, E. B., Bliss, D., Breau, C., Damon-Randall, K., Sundt-Hansen, L. E., Hatfield, E. M. C., Horsburgh, G., Hansen, H., Maoiléidigh, N., Sheehan, T., & Sutton, S. G. (2021). Atlantic salmon in a rapidly changing environment-Facing the challenges of reduced marine survival and climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(9), 2654-2665. https://doi.org/10.1002/aqc.3624. ; Thorstad, E. B., Whoriskey, F., Rikardsen, A. H., & Aarestrup, K. (2011). Aquatic nomads: The life and migrations of the Atlantic Salmon. In Atlantic Salmon ecology. Blackwell Publishing Ltd. https://doi.org/10.1002/9781444327755.ch1. ; Van Der Have, T. M., & De Jong, G. (1996). Adult size in ectotherms: Temperature effects on growth and differentiation. Journal of Theoretical Biology, 183(3), 329-340. https://doi.org/10.1006/jtbi.1996.0224. ; van Rossum, G., & Drake, F. L. (2010). The Python Library Reference. October. ; Venturelli, P. A., Lester, N. P., Marshall, T. R., & Shuter, B. J. (2010). Consistent patterns of maturity and density-dependent growth among populations of walleye (Sander vitreus): Application of the growing degree-day metric. Canadian Journal of Fisheries and Aquatic Sciences, 67(7), 1057-1067. https://doi.org/10.1139/F10-041. ; Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2093-2106. https://doi.org/10.1098/rstb.2010.0055.
  • Grant Information: 15/IA/3028 Ireland SFI_ Science Foundation Ireland; 16/BBSRC/3316 Ireland SFI_ Science Foundation Ireland
  • Contributed Indexing: Keywords: ISIMIP; aquatic ectotherms; growing degree days; life history; population dynamics
  • Substance Nomenclature: 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20231101 Date Completed: 20240318 Latest Revision: 20240318
  • Update Code: 20240318

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -