Zum Hauptinhalt springen

Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases.

Miyamoto, T ; Fushinobu, S ; et al.
In: The FEBS journal, Jg. 291 (2024), Heft 2, S. 308-322
Online academicJournal

Titel:
Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases.
Autor/in / Beteiligte Person: Miyamoto, T ; Fushinobu, S ; Saitoh, Y ; Sekine, M ; Katane, M ; Sakai-Kato, K ; Homma, H
Link:
Zeitschrift: The FEBS journal, Jg. 291 (2024), Heft 2, S. 308-322
Veröffentlichung: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-, 2024
Medientyp: academicJournal
ISSN: 1742-4658 (electronic)
DOI: 10.1111/febs.16953
Schlagwort:
  • Animals
  • Humans
  • Tetrahydrofolates
  • Methyltransferases
  • Serine
  • Hydro-Lyases genetics
  • Mammals metabolism
  • Glycine Hydroxymethyltransferase genetics
  • Glycine Hydroxymethyltransferase chemistry
  • Escherichia coli genetics
  • Escherichia coli metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [FEBS J] 2024 Jan; Vol. 291 (2), pp. 308-322. <i>Date of Electronic Publication: </i>2023 Sep 18.
  • MeSH Terms: Glycine Hydroxymethyltransferase* / genetics ; Glycine Hydroxymethyltransferase* / chemistry ; Escherichia coli* / genetics ; Escherichia coli* / metabolism ; Animals ; Humans ; Tetrahydrofolates ; Methyltransferases ; Serine ; Hydro-Lyases / genetics ; Mammals / metabolism
  • References: Vollmer W, Blanot D & de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32, 149-167. ; Miyamoto T & Homma H (2021) d-Amino acid metabolism in bacteria. J Biochem 170, 5-13. ; Miyamoto T, Katane M, Saitoh Y, Sekine M & Homma H (2020) Involvement of penicillin-binding proteins in the metabolism of a bacterial peptidoglycan containing a non-canonical d-Amino acid. Amino Acids 52, 487-497. ; Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA & Waldor MK (2009) d-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552-1555. ; Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R & Losick R (2010) d-Amino acids trigger biofilm disassembly. Science 2010, 627-629. ; Leiman SA, May JM, Lebar MD, Kahne D, Kolter R & Losick R (2013) d-Amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol 195, 5391-5395. ; Zilm PS, Butnejski V, Rossi-Fedele G, Kidd SP, Edwards S & Vasilev K (2017) d-Amino acids reduce enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS ONE 12, e0170670. ; Ramón-Peréz ML, Diaz-Cedillo F, Ibarra JA, Torales-Cardeña A, Rodríguez-Martínez S, Jan-Roblero J, Cancino-Diaz ME & Cancino-Diaz JC (2014) d-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J Med Microbiol 63, 1369-1376. ; Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J & Losick R (2011) Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193, 5616-5622. ; Warraich AA, Mohammed AR, Perrie Y, Hussain M, Gibson H & Rahman A (2020) Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci Rep 10, 9021. ; Grohs P, Gutmann L, Legrand R, Schoot B & Mainardi JL (2000) Vancomycin resistance is associated with serine-containing peptidoglycan in enterococcus gallinarum. J Bacteriol 182, 6228-6232. ; Connolly JP, Goldstone RJ, Burgess K, Cogdell RJ, Beatson SA, Vollmer W, Smith DG & Roe AJ (2015) The host metabolite d-serine contributes to bacterial niche specificity through gene selection. ISME J 9, 1052. ; Di Fiore MM, Santillo A & Chieffi BG (2014) Current knowledge of d-aspartate in glandular tissues. Amino Acids 46, 1805-1818. ; Katane M & Homma H (2011) d-Aspartate-an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879, 3108-3121. ; Scolari MJ & Acosta GB (2007) d-Serine: a new word in the glutamatergic neuro-glial language. Amino Acids 33, 563-574. ; Wolosker H, Dumin E, Balan L & Foltyn VN (2008) d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275, 3514-3526. ; Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD & Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96, 721-725. ; Strísovský K, Jirásková J, Barinka C, Majer P, Rojas C, Slusher BS & Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of l-serine to pyruvate. FEBS Lett 535, 44-48. ; Pollegioni L, Piubelli L, Sacchi S, Pilone MS & Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64, 1373-1394. ; Katane M & Homma H (2010) d-Aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7, 1435-1449. ; Florio R, di Salvo ML, Vivoli M & Contestabile R (2011) Serine hydroxymethyltransferase: a model enzyme for mechanistic, structural, and evolutionary studies. Biochim Biophys Acta 1814, 1489-1496. ; Schirch L & Gross T (1968) Serine transhydroxymethylase. Identification as the threonine and allothreonine aldolases. J Biol Chem 243, 5651-5655. ; Palekar AG, Tate SS & Meister A (1973) Rat liver aminomalonate decarboxylase. Identity with cytoplasmic serine hydroxymethylase and allothreonine aldolase. J Biol Chem 248, 1158-1167. ; Shostak K & Schirch V (1988) Serine hydroxymethyltransferase: mechanism of the racemization and transamination of d- and l-alanine. Biochemistry 27, 8007-8014. ; Renwick SB, Snell K & Baumann U (1998) The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure 6, 1105-1116. ; Daidone F, Florio R, Rinaldo S, Contestabile R, di Salvo ML, Cutruzzolà F, Bossa F & Paiardini A (2011) In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur J Med Chem 46, 1616-1621. ; Yuthavong Y, Kamchonwongpaisan S, Leartsakulpanich U & Chitnumsub P (2006) Folate metabolism as a source of molecular targets for antimalarials. Future Microbiol 1, 113-125. ; Maenpuen S, Sopitthummakhun K, Yuthavong Y, Chaiyen P & Leartsakulpanich U (2009) Characterization of Plasmodium falciparum serine hydroxymethyltransferase-a potential antimalarial target. Mol Biochem Parasitol 168, 63-73. ; Scarsdale JN, Kazanina G, Radaev S, Schirch V & Wright HT (1999) Crystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 a resolution: mechanistic implications. Biochemistry 38, 8347-8358. ; Schirch V, Hopkins S, Villar E & Angelaccio S (1985) Serine hydroxymethyltransferase from Escherichia coli: purification and properties. J Bacteriol 163, 1-7. ; Kruschwitz H, Ren S, Di Salvo M & Schirch V (1995) Expression, purification, and characterization of human cytosolic serine hydroxymethyltransferase. Protein Expr Purif 6, 411-416. ; Giardina G, Brunotti P, Fiascarelli A, Cicalini A, Costa MG, Buckle AM, di Salvo ML, Giorgi A, Marani M, Paone A et al. (2015) How pyridoxal 5′-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J 282, 1225-1241. ; Pinthong C, Maenpuen S, Amornwatcharapong W, Yuthavong Y, Leartsakulpanich U & Chaiyen P (2014) Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition. FEBS J 281, 2570-2583. ; Tanaka H, Yamamoto A, Ishida T & Horiike K (2007) Simultaneous measurement of d-serine dehydratase and d-amino acid oxidase activities by the detection of 2-oxo-acid formation with reverse-phase high-performance liquid chromatography. Anal Biochem 362, 83-88. ; Sopitthummakhun K, Maenpuen S, Yuthavong Y, Leartsakulpanich U & Chaiyen P (2009) Serine hydroxymethyltransferase from Plasmodium vivax is different in substrate specificity from its homologues. FEBS J 276, 4023-4036. ; Hoffman HE, Jirásková J, Ingr M, Zvelebil M & Konvalinka J (2009) Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif 63, 62-67. ; Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K & Polegioni L (2006) Characterization of human d-amino acid oxidase. FEBS Lett 580, 2358-2364. ; Marceau M, Lewis SD, Kojiro CL & Shafer JA (1989) Contribution of a conserved arginine near the active site of Escherichia coli d-serine dehydratase to cofactor affinity and catalytic activity. J Biol Chem 264, 2753-2757. ; Schirch L & Quashnock J (1981) Evidence that tetrahydrofolate does not bind to serine hydroxymethyltransferase with positive homotropic cooperativity. J Biol Chem 256, 6245-6249. ; Giardina G, Paone A, Tramonti A, Lucchi R, Marani M, Magnifico MC, Bouzidi A, Pontecorvi V, Guiducci G, Zamparelli C et al. (2018) The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells. FEBS J 285, 3238-3253. ; Soutourina J, Plateau P & Blanquet S (2000) Metabolism of d-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275, 32535-32542. ; Dupourque D, Newton WA & Snell EE (1966) Purification and properties of d-serine dehydrase from Escherichia coli. J Biol Chem 241, 1233-1238. ; Scarsdale JN, Radaev S, Kazanina G, Schirch V & Wright HT (2000) Crystal structure at 2.4 a resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol 296, 155-168. ; Chitnumsub P, Jaruwat A, Riangrungroj P, Ittarat W, Noytanom K, Oonanant W, Vanichthanankul J, Chuankhayan P, Maenpuen S, Chen CJ et al. (2014) Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control. Acta Crystallogr D Biol Crystallogr 70, 3177-3186. ; Schirch V & Szebenyi DM (2005) Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol 9, 482-487. ; Bhavani S, Trivedi V, Jala VR, Subramanya HS, Kaul P, Prakash V, Appaji Rao N & Savithri HS (2005) Role of Lys-226 in the catalytic mechanism of Bacillus stearothermophilus serine hydroxymethyltransferase-crystal structure and kinetic studies. Biochemistry 44, 6929-6937. ; Tanaka H, Senda M, Venugopalan N, Yamamoto A, Senda T, Ishida T & Horiike K (2011) Crystal structure of a zinc-dependent d-serine dehydratase from chicken kidney. J Biol Chem 286, 27548-27558. ; Urusova DV, Isupov MN, Antonyuk S, Kachalova GS, Obmolova G, Vagin AA, Lebedev AA, Burenkov GP, Dauter Z, Bartunik HD et al. (2012) Crystal structure of d-serine dehydratase from Escherichia coli. Biochim Biophys Acta 1824, 422-432. ; Yamada T, Komoto J, Takata Y, Ogawa H, Pitot HC & Takusagawa F (2003) Crystal structure of serine dehydratase from rat liver. Biochemistry 42, 12854-12865. ; Percudani R & Peracchi A (2009) The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10, 273. ; Kimura T, Hesaka A & Isaka Y (2020) Utility of d-serine monitoring in kidney disease. Biochim Biophys Acta Proteins Proteom 1868, 140449. ; Piubelli L, Pollegioni L, Rabattoni V, Mauri M, Princiotta Cariddi L, Versino M & Sacchi S (2021) Serum d-serine levels are altered in early phases of Alzheimer's disease: towards a precocious biomarker. Transl Psychiatry 11, 77. ; Kimura-Ohba S, Takabatake Y, Takahashi A, Tanaka Y, Sakai S, Isaka Y & Kimura T (2023) Blood levels of d-amino acids reflect the clinical course of COVID-19. Biochem Biophys Rep 34, 101452. ; Miyamoto T, Katane M, Saitoh Y, Sekine M & Homma H (2018) Cystathionine β-lyase is involved in d-amino acid metabolism. Biochem J 475, 1397-1410. ; Miyamoto T, Saitoh Y, Katane M, Sekine M, Sakai-Kato K & Homma H (2021) Acetylornithine aminotransferase TM1785 performs multiple functions in the hyperthermophile Thermotoga maritima. FEBS Lett 595, 2931-2941. ; Miyamoto T, Moriya T, Katane M, Saitoh Y, Sekine M, Sakai-Kato K, Oshima T & Homma H (2022) Identification of a novel d-amino acid aminotransferase involved in d-glutamate biosynthetic pathways in the hyperthermophile Thermotoga maritima. FEBS J 289, 5933-5946. ; Miyamoto T, Katane M, Saitoh Y, Sekine M & Homma H (2017) Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis. Amino Acids 49, 1885-1894. ; Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL & Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008. ; Yamada T, Komoto J, Kasuya T, Takata Y, Ogawa H, Mori H & Takusagawa F (2008) A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: crystal structure and site-directed mutagenesis studies. Biochim Biophys Acta 1780, 809-818.
  • Grant Information: Ito Science Foundation; 21K05348 Japan Society for the Promotion of Science
  • Contributed Indexing: Keywords: d-amino acid; d-serine; d-serine dehydratase; pyruvate; serine hydroxymethyltransferase
  • Substance Nomenclature: EC 2.1.2.1 (Glycine Hydroxymethyltransferase) ; EC 4.3.1.18 (D-serine dehydratase) ; 0 (Tetrahydrofolates) ; EC 2.1.1.- (Methyltransferases) ; 452VLY9402 (Serine) ; EC 4.2.1.- (Hydro-Lyases)
  • Entry Date(s): Date Created: 20230913 Date Completed: 20240122 Latest Revision: 20240205
  • Update Code: 20240206

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -