Zum Hauptinhalt springen

The recovery of European freshwater biodiversity has come to a halt.

Haase, P ; Bowler, DE ; et al.
In: Nature, Jg. 620 (2023-08-01), Heft 7974, S. 582-588
Online academicJournal

Titel:
The recovery of European freshwater biodiversity has come to a halt.
Autor/in / Beteiligte Person: Haase, P ; Bowler, DE ; Baker, NJ ; Bonada, N ; Domisch, S ; Garcia Marquez, JR ; Heino, J ; Hering, D ; Jähnig, SC ; Schmidt-Kloiber, A ; Stubbington, R ; Altermatt, F ; Álvarez-Cabria, M ; Amatulli, G ; Angeler, DG ; Archambaud-Suard, G ; Jorrín, IA ; Aspin, T ; Azpiroz, I ; Bañares, I ; Ortiz, JB ; Bodin, CL ; Bonacina, L ; Bottarin, R ; Cañedo-Argüelles, M ; Csabai, Z ; Datry, T ; de Eyto E ; Dohet, A ; Dörflinger, G ; Drohan, E ; Eikland, KA ; England, J ; Eriksen, TE ; Evtimova, V ; Feio, MJ ; Ferréol, M ; Floury, M ; Forcellini, M ; Forio, MAE ; Fornaroli, R ; Friberg, N ; Fruget, JF ; Georgieva, G ; Goethals, P ; Graça, MAS ; Graf, W ; House, A ; Huttunen, KL ; Jensen, TC ; Johnson, RK ; Jones, JI ; Kiesel, J ; Kuglerová, L ; Larrañaga, A ; Leitner, P ; L'Hoste, L ; Lizée, MH ; Lorenz, AW ; Maire, A ; Arnaiz, JAM ; McKie, BG ; Millán, A ; Monteith, D ; Muotka, T ; Murphy, JF ; Ozolins, D ; Paavola, R ; Paril, P ; Peñas, FJ ; Pilotto, F ; Polášek, M ; Rasmussen, JJ ; Rubio, M ; Sánchez-Fernández, D ; Sandin, L ; Schäfer, RB ; Scotti, A ; Shen, LQ ; Skuja, A ; Stoll, S ; Straka, M ; Timm, H ; Tyufekchieva, VG ; Tziortzis, I ; Uzunov, Y ; van der Lee GH ; Vannevel, R ; Varadinova, E ; Várbíró, G ; Velle, G ; Verdonschot, PFM ; Verdonschot, RCM ; Vidinova, Y ; Wiberg-Larsen, P ; Welti, EAR
Link:
Zeitschrift: Nature, Jg. 620 (2023-08-01), Heft 7974, S. 582-588
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-06400-1
Schlagwort:
  • Animals
  • Introduced Species trends
  • Europe
  • Human Activities
  • Hydrobiology
  • Time Factors
  • Crop Production
  • Urbanization
  • Global Warming
  • Water Pollutants analysis
  • Biodiversity
  • Fresh Water
  • Invertebrates classification
  • Invertebrates physiology
  • Conservation of Water Resources statistics & numerical data
  • Conservation of Water Resources trends
  • Environmental Monitoring
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2023 Aug; Vol. 620 (7974), pp. 582-588. <i>Date of Electronic Publication: </i>2023 Aug 09.
  • MeSH Terms: Biodiversity* ; Fresh Water* ; Invertebrates* / classification ; Invertebrates* / physiology ; Conservation of Water Resources* / statistics & numerical data ; Conservation of Water Resources* / trends ; Environmental Monitoring* ; Animals ; Introduced Species / trends ; Europe ; Human Activities ; Hydrobiology ; Time Factors ; Crop Production ; Urbanization ; Global Warming ; Water Pollutants / analysis
  • References: Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006). (PMID: 1633674710.1017/S1464793105006950) ; Vaughan, I. P. & Ormerod, S. J. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 18, 2184–2194 (2012). (PMID: 10.1111/j.1365-2486.2012.02662.x) ; Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015). ; Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019). (PMID: 3004887010.1016/j.scitotenv.2018.07.271) ; Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019). (PMID: 3046793010.1111/brv.12480) ; Mantyka-Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S. & Rhodes, J. R. Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J. Appl. Ecol. 51, 572–581 (2014). (PMID: 10.1111/1365-2664.12236) ; Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017). (PMID: 28198420531685610.1038/ncomms14435) ; European Environment Agency (EEA). European Waters: Assessment of Status and Pressures 2018 EEA report 7/2018, https://www.eea.europa.eu/publications/state-of-water (2018). ; Vaughan, I. P. & Gotelli, N. J. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat. Commun. 10, 1956 (2019). (PMID: 31028258648658610.1038/s41467-019-09736-3) ; Schwarzbach, S. E., Albertson, J. D. & Thomas, C. M. Effects of predation, flooding, and contamination on reproductive success of California clapper rails (Rallus longirostris obsoletus) in San Francisco Bay. Auk 123, 45–60 (2006). (PMID: 10.1093/auk/123.1.45) ; Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020). (PMID: 3254180210.1038/s41559-020-1216-4) ; Vaughn, C. C. & Hakenkamp, C. C. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 46, 1431–1446 (2001). (PMID: 10.1046/j.1365-2427.2001.00771.x) ; Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Evol. Syst. 33, 341–370 (2002). (PMID: 10.1146/annurev.ecolsys.33.010802.150519) ; Tilman, D. In Encyclopaedia of Biodiversity (ed. Levin, S. A.) 109–120 (Academic, 2001). ; Santini, L. et al. Assessing the suitability of diversity metrics to detect biodiversity change. Biol. Conserv. 213, 341–350 (2017). (PMID: 10.1016/j.biocon.2016.08.024) ; Tumolo, B. B. et al. Toward spatio‐temporal delineation of positive interactions in ecology. Ecol. Evol. 10, 9026–9036 (2020). (PMID: 32953043748725010.1002/ece3.6616) ; Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019). (PMID: 3162420810.1126/science.aaw1620) ; van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020). (PMID: 3232759610.1126/science.aax9931) ; Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020). (PMID: 32661354735903410.1038/s41467-020-17171-y) ; Bouraoui, F. & Grizzetti, B. Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 409, 4899–4916 (2011). (PMID: 2191124510.1016/j.scitotenv.2011.08.015) ; Haase, P. et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 658, 1531–1538 (2019). (PMID: 3067801110.1016/j.scitotenv.2018.12.234) ; Baker, N. J., Pilotto, F., Jourdan, J., Beudert, B. & Haase, P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total Environ. 758, 143685 (2021). (PMID: 3328826510.1016/j.scitotenv.2020.143685) ; Eriksen, T. E. et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 126, 107609 (2021). (PMID: 10.1016/j.ecolind.2021.107609) ; Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018). (PMID: 30147447609939210.1111/geb.12729) ; Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020). (PMID: 3181923510.1038/s41559-019-1052-6) ; McGill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006). (PMID: 1670108310.1016/j.tree.2006.02.002) ; McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015). (PMID: 2554231210.1016/j.tree.2014.11.006) ; Jarzyna, M. A. & Jetz, W. A near half‐century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017). (PMID: 10.1111/gcb.13571) ; Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008). (PMID: 18458348237333310.1073/pnas.0709472105) ; Isaak, D. J. et al. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl Acad. Sci. USA 113, 4374–4379 (2016). (PMID: 27044091484344110.1073/pnas.1522429113) ; Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015). (PMID: 10.1007/s00027-014-0377-0) ; Cid, N. et al. From meta‐system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 20, 49–57 (2022). (PMID: 3587335910.1002/fee.2417) ; Wang, J. et al. What explains the variation in dam impacts on riverine macroinvertebrates? A global quantitative synthesis. Environ. Res. Lett. 15, 124028 (2020). (PMID: 10.1088/1748-9326/abc4fc) ; Rosset, V. et al. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 51, 415–425 (2014). (PMID: 10.1111/1365-2664.12201) ; Bruno, D. et al. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Glob. Change Biol. 25, 1612–1628 (2019). (PMID: 10.1111/gcb.14581) ; Gebauer, R. et al. Distribution of alien animal species richness in the Czech Republic. Ecol. Evol. 8, 4455–4464 (2018). (PMID: 29760887593844110.1002/ece3.4008) ; Whelan, M. J. et al. Is water quality in British rivers “better than at any time since the end of the Industrial Revolution”? Sci. Total Environ. 843, 157014 (2022). (PMID: 3577254210.1016/j.scitotenv.2022.157014) ; Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020). (PMID: 3332866710.1038/s41586-020-3005-2) ; Durance, I. & Ormerod, S. J. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 54, 388–405 (2009). (PMID: 10.1111/j.1365-2427.2008.02112.x) ; Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21, 203–217 (1997). (PMID: 900807110.1007/s002679900019) ; Lemm, J. U. et al. Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob. Change Biol. 27, 1962–1975 (2021). (PMID: 10.1111/gcb.15504) ; Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021). (PMID: 34244500827090310.1038/s41467-021-24281-8) ; Verdonschot, R. C. M., Kail, J., McKie, B. G. & Verdonschot, P. F. M. The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroinvertebrates. Hydrobiologia 769, 55–66 (2016). (PMID: 10.1007/s10750-015-2575-8) ; Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021). (PMID: 34102072818701010.1098/rsbl.2021.0137) ; Feio, M. J., Dolédec, S. & Graça, M. A. S. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ. Pollut. 196, 300–308 (2015). (PMID: 2546372610.1016/j.envpol.2014.09.026) ; Malaj, E. et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl Acad. Sci. USA 111, 9549–9554 (2014). (PMID: 24979762408447910.1073/pnas.1321082111) ; Jourdan, J. et al. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol. Rev. 94, 368–387 (2019). (PMID: 3013636210.1111/brv.12458) ; Bhide, S. V. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 4, 699–707 (2021). (PMID: 10.1038/s41893-021-00713-7) ; Maasri, A. et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 25, 255–263 (2022). (PMID: 3485421110.1111/ele.13931) ; Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018). (PMID: 2989850510.1016/j.scitotenv.2017.08.111) ; Heino, J. et al. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring. J. Appl. Ecol. 57, 1192–1198 (2020). (PMID: 10.1111/1365-2664.13645) ; Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020). (PMID: 10.1111/icad.12408) ; Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020). (PMID: 3206688810.1038/s41559-020-1111-z) ; Pandolfi, J. M., Staples, T. L. & Kiessling, W. Increased extinction in the emergence of novel ecological communities. Science 370, 220–222 (2020). (PMID: 3303321810.1126/science.abb3996) ; Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020). (PMID: 33288709773987610.1073/pnas.2009584117) ; Chapman, D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring 2nd edn (Taylor & Francis, 1996). ; Hallett, L. et al. codyn: community dynamics metrics. R package version 2.0.5 (2020). ; Oksanen, A. J. et al. vegan: community ecology package. R package version 2.5-7 (2020). ; Schmidt-Kloiber, A. & Hering, D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015). (PMID: 10.1016/j.ecolind.2015.02.007) ; Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci. Data 7, 386 (2020). (PMID: 33177529765824110.1038/s41597-020-00732-7) ; Schmera, D., Heino, J., Podani, J., Erős, T. & Dolédec, S. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27–44 (2017). (PMID: 10.1007/s10750-016-2974-5) ; Schmera, D., Heino, J. & Podani, J. Characterising functional strategies and trait space of freshwater macroinvertebrates. Sci. Rep. 12, 12283 (2022). (PMID: 35854038929648410.1038/s41598-022-16472-0) ; Tachet, H., Richoux, P., Bournaud, M. & Usseglio‐Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Editions, 2010). ; Chevenet, F., Dolédec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994). (PMID: 10.1111/j.1365-2427.1994.tb01742.x) ; Kunz, S. et al. Tackling inconsistencies among freshwater invertebrate trait databases: harmonising across continents and aggregating taxonomic resolution. Freshw. Biol. 67, 275–291 (2022). (PMID: 10.1111/fwb.13840) ; Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014). ; Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021). (PMID: 3401516810.1111/ele.13778) ; Baker, N. J., Pilotto, F., Haubrock, P. J., Beudert, B. & Haase, P. Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity. Ecol. Evol. 11, 17471–17484 (2021). (PMID: 34938522866876310.1002/ece3.8381) ; Pavoine, S. adiv: an R package to analyse biodiversity in ecology. R package version 2.0.1 (2020). ; Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016). (PMID: 10.1111/2041-210X.12604) ; Roy D. et al. Inventory of alien invasive species in Europe (DAISIE). Figshare https://doi.org/10.15468/ybwd3x (2020). ; Seebans, H. Alien species first records database (GAFRD). Figshare https://doi.org/10.5281/zenodo.4632335 (2021). ; Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018). (PMID: 29432147587796210.1073/pnas.1719429115) ; GBIF: The Global Biodiversity Information Facility, https://www.gbif.org/ (GBIF, 2022, accessed January 2021). ; Yamazaki, D. et al. MERIT Hydro: a high‐resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019). (PMID: 10.1029/2019WR024873) ; Amatulli, G. et al. Hydrography90m: a new high-resolution global hydrographic dataset. Earth Syst. Sci. Data 14, 4525–4550 (2022). (PMID: 10.5194/essd-14-4525-2022) ; Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: a multi-purpose open source GIS. Environ. Model. Softw. 31, 124–130 (2012). (PMID: 10.1016/j.envsoft.2011.11.014) ; Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011). (PMID: 10.1890/100125) ; Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018). (PMID: 29313841575937210.1038/sdata.2017.191) ; Bürkner, P.-C. brms: an R package for Bayesian multilevel models using stan. R package version 2.16.3 (2021). ; Land Cover CCI Product User Guide Version 2, https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017). ; Ziebarth, N. L., Abbott, K. C. & Ives, A. R. Weak population regulation in ecological time series. Ecol. Lett. 13, 21–31 (2010). (PMID: 1984971010.1111/j.1461-0248.2009.01393.x) ; White, E. R. Minimum time required to detect population trends: the need for long-term monitoring programs. Bioscience 69, 40–46 (2019). (PMID: 10.1093/biosci/biy144) ; Cusser, S., Helms, J., Bahlia, C. A. & Haddad, N. M. How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecol. Lett. 24, 1103–1111 (2021). (PMID: 3361629510.1111/ele.13710) ; Arel-Bundock, V., Diniz, M. A., Greifer, N. & Bacher, E. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 4.2.1 (2023). ; Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: a Hierarchical Perspective (Elsevier, 2012). ; Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.4.1 (2020).
  • Substance Nomenclature: 0 (Water Pollutants)
  • Entry Date(s): Date Created: 20230809 Date Completed: 20230823 Latest Revision: 20230905
  • Update Code: 20240514
  • PubMed Central ID: PMC10432276

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -