Zum Hauptinhalt springen

Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder.

Park, G ; Jang, WE ; et al.
In: Experimental & molecular medicine, Jg. 55 (2023-08-01), Heft 8, S. 1783
Online academicJournal

Titel:
Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder.
Autor/in / Beteiligte Person: Park, G ; Jang, WE ; Kim, S ; Gonzales, EL ; Ji, J ; Choi, S ; Kim, Y ; Park, JH ; Mohammad, HB ; Bang, G ; Kang, M ; Jeon, SJ ; Kim, JY ; Kim, KP ; Shin, CY ; An, JY ; Kim, MS ; Lee, YS
Link:
Zeitschrift: Experimental & molecular medicine, Jg. 55 (2023-08-01), Heft 8, S. 1783
Veröffentlichung: Jan. 2013- : New York : Nature Publishing Group ; <i>Original Publication</i>: Seoul : Korean Society of Medical Biochemistry and Molecular Biology, 1996-, 2023
Medientyp: academicJournal
ISSN: 2092-6413 (electronic)
DOI: 10.1038/s12276-023-01065-2
Schlagwort:
  • Animals
  • Female
  • Mice
  • Pregnancy
  • Disease Models, Animal
  • Proteomics
  • Up-Regulation
  • Valproic Acid adverse effects
  • Autism Spectrum Disorder chemically induced
  • Autism Spectrum Disorder genetics
  • Ubiquitin-Protein Ligases metabolism
  • Wnt Signaling Pathway
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Exp Mol Med] 2023 Aug; Vol. 55 (8), pp. 1783-1794. <i>Date of Electronic Publication: </i>2023 Aug 01.
  • MeSH Terms: Autism Spectrum Disorder* / chemically induced ; Autism Spectrum Disorder* / genetics ; Ubiquitin-Protein Ligases* / metabolism ; Wnt Signaling Pathway* ; Animals ; Female ; Mice ; Pregnancy ; Disease Models, Animal ; Proteomics ; Up-Regulation ; Valproic Acid / adverse effects
  • References: American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ 5th ed. (American Psychiatric Publishing, Inc., 2013). ; Fischbach, G. D. & Lord, C. The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010). (PMID: 2095592610.1016/j.neuron.2010.10.006) ; Ehninger, D. et al. Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol. Psychiatry 17, 62–70 (2012). (PMID: 2107960910.1038/mp.2010.115) ; Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020). (PMID: 3185306610.1038/s41586-019-1843-6) ; Perucca, E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16, 695–714 (2002). (PMID: 1226986210.2165/00023210-200216100-00004) ; Vorhees, C. V. Teratogenicity and developmental toxicity of valproic acid in rats. Teratology 35, 195–202 (1987). (PMID: 311099210.1002/tera.1420350205) ; Bromley, R. L., Mawer, G., Clayton-Smith, J. & Baker, G. A. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology 71, 1923–1924 (2008). (PMID: 1904756510.1212/01.wnl.0000339399.64213.1a) ; Rasalam, A. D. et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol. 47, 551–555 (2005). (PMID: 1610845610.1017/S0012162205001076) ; Go, H. S. et al. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3beta/beta-catenin pathway. Neuropharmacology 63, 1028–1041 (2012). (PMID: 2284195710.1016/j.neuropharm.2012.07.028) ; Kim, K. C. et al. The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137–142 (2011). (PMID: 2119514410.1016/j.toxlet.2010.12.018) ; Mabunga, D. F., Gonzales, E. L., Kim, J. W., Kim, K. C. & Shin, C. Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol. 24, 285–300 (2015). (PMID: 26713077468832910.5607/en.2015.24.4.285) ; Roullet, F. I., Lai, J. K. & Foster, J. A. In utero exposure to valproic acid and autism–a current review of clinical and animal studies. Neurotoxicol. Teratol. 36, 47–56 (2013). (PMID: 2339580710.1016/j.ntt.2013.01.004) ; Chomiak, T., Turner, N. & Hu, B. What we have learned about autism spectrum disorder from valproic acid. Pathol. Res. Int. 2013, 712758 (2013). (PMID: 10.1155/2013/712758) ; Nicolini, C. & Fahnestock, M. The valproic acid-induced rodent model of autism. Exp. Neurol. 299, 217–227 (2018). (PMID: 2847262110.1016/j.expneurol.2017.04.017) ; Schneider, T. & Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80–89 (2005). (PMID: 1523899110.1038/sj.npp.1300518) ; Markram, K., Rinaldi, T., Mendola, D. L., Sandi, C. & Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33, 901–912 (2008). (PMID: 1750791410.1038/sj.npp.1301453) ; Wang, R. et al. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model. Front. Cell. Neurosci. 12 (2018). ; Yamaguchi, H. et al. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res. 333, 67–73 (2017). (PMID: 2865556510.1016/j.bbr.2017.06.035) ; Lazaro, M. T. et al. Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep. 27, 2567–2578.e2566 (2019). (PMID: 31141683655348310.1016/j.celrep.2019.05.006) ; Qiu, S., Anderson, C. T., Levitt, P. & Shepherd, G. M. G. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated met receptor tyrosine kinase. J. Neurosci. 31, 5855 (2011). (PMID: 21490227308602610.1523/JNEUROSCI.6569-10.2011) ; Gobbi, G. & Janiri, L. Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology 185, 255–262 (2006). (PMID: 1649613110.1007/s00213-006-0317-3) ; Kalkman, H. O. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol. Autism 3, 10 (2012). (PMID: 23083465349209310.1186/2040-2392-3-10) ; Krumm, N., O’Roak, B. J., Shendure, J. & Eichler, E. E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 37, 95–105 (2014). (PMID: 2438778910.1016/j.tins.2013.11.005) ; Kwan, V., Unda, B. K. & Singh, K. K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord. 8, 45 (2016). (PMID: 27980692513722010.1186/s11689-016-9176-3) ; Qin, L., Dai, X. & Yin, Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol. Cell. Neurosci. 75, 27–35 (2016). (PMID: 2734382510.1016/j.mcn.2016.06.004) ; Zhang, Y. et al. Downregulating the canonical Wnt/beta-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem. Res. 37, 1409–1419 (2012). (PMID: 2237447110.1007/s11064-012-0724-2) ; An, J. Y. et al. Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl. Psychiatry 4, e394 (2014). (PMID: 24893065408031910.1038/tp.2014.38) ; Jang, W. E. et al. Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol. Psychiatry 28, 810–821 (2023). (PMID: 3625344310.1038/s41380-022-01822-1) ; Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019). (PMID: 31097668767872410.1126/science.aav8130) ; Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016). (PMID: 2762964110.1038/nature19949) ; Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014). (PMID: 24870542440373710.1038/nature13302) ; Sebat, J. et al. Strong association of De Novo copy number mutations with autism. Science 316, 445–449 (2007). (PMID: 17363630299350410.1126/science.1138659) ; Kojic, M. et al. Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype. Nat. Commun. 12, 2678 (2021). (PMID: 33976153811345010.1038/s41467-021-22888-5) ; Thacker, S. & Eng, C. Transcriptome-(phospho)proteome characterization of brain of a germline model of cytoplasmic-predominant Pten expression with autism-like phenotypes. Npj. Genom. Med. 6, 42 (2021). (PMID: 34078911817300810.1038/s41525-021-00201-z) ; Courchesne, E. et al. Neuron number and size in prefrontal cortex of children with autism. JAMA 306, 2001–2010 (2011). (PMID: 2206899210.1001/jama.2011.1638) ; Rinaldi, T., Perrodin, C. & Markram, H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front. Neural Circuit 2 (2008). ; Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal cortex and social cognition in mouse and man. Front. Psychol. 6, 1805 (2015). (PMID: 26635701465989510.3389/fpsyg.2015.01805) ; Kim, J.-W. et al. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 44, 314–323 (2019). (PMID: 2989940510.1038/s41386-018-0098-5) ; Park, J. H. et al. Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Exp. Mol. Med. 53, 1092–1108 (2021). (PMID: 34188179825758710.1038/s12276-021-00643-6) ; Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511) ; Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020). (PMID: 31691815) ; Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 27141961498792410.1093/nar/gkw377) ; Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017). (PMID: 2871523510.1089/cmb.2017.0096) ; Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 28263959560014810.1038/nmeth.4197) ; Ryu, H.-H. et al. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci. Signal. 12, eaau5755 (2019). (PMID: 30837304680002510.1126/scisignal.aau5755) ; Park, G. et al. Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice. Cell Rep. 35 (2021). ; Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. Chapter 8, Unit 8 26 (2011). (PMID: 217323144904775) ; Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018). (PMID: 30096314608693410.1016/j.cell.2018.06.021) ; Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017). (PMID: 29217575599160910.1126/science.aap8809) ; Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016). (PMID: 27919067710290510.1038/nature20612) ; Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022). (PMID: 35982160965301310.1038/s41588-022-01104-0) ; Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020). (PMID: 33057194711682610.1038/s41586-020-2832-5) ; Heyne, H. O. et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat. Genet. 50, 1048–1053 (2018). (PMID: 2994208210.1038/s41588-018-0143-7) ; Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022). (PMID: 35396579980580210.1038/s41586-022-04556-w) ; Li, J. et al. CBP/p300 are bimodal regulators of Wnt signaling. EMBO J. 26, 2284–2294 (2007). (PMID: 17410209186496710.1038/sj.emboj.7601667) ; Ciani, L. et al. Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1. Nat. Commun. 6, 8302 (2015). (PMID: 2640064710.1038/ncomms9302) ; Nielsen, C. P., Jernigan, K. K., Diggins, N. L., Webb, D. J. & MacGurn, J. A. USP9X deubiquitylates DVL2 to regulate WNT pathway specification. Cell. Rep. 28, 1074–1089.e1075 (2019). (PMID: 31340145688414010.1016/j.celrep.2019.06.083) ; Zhang, Y. et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13, 623–629 (2011). (PMID: 2147885910.1038/ncb2222) ; Lee, E., Salic, A., Krüger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, e10 (2003). (PMID: 1455190821269110.1371/journal.pbio.0000010) ; Gao, W. & Ho, M. The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep. 1, 14–19 (2011). (PMID: 225635653343874) ; Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e214 (2019). (PMID: 31171447676408910.1016/j.neuron.2019.05.002) ; Ahmad-Annuar, A. et al. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J. Cell Biol. 174, 127–139 (2006). (PMID: 16818724206417010.1083/jcb.200511054) ; Ravindranath, A. et al. Wnt–β-catenin–Tcf-4 signalling-modulated invasiveness is dependent on osteopontin expression in breast cancer. Br. J. Cancer 105, 542–551 (2011). (PMID: 21772333317096910.1038/bjc.2011.269) ; Cheon, S. et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc. Natl Acad. Sci. USA 116, 3662–3667 (2019). (PMID: 30808755639757310.1073/pnas.1818751116) ; Basel-Vanagaite, L. et al. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am. J. Hum. Genet. 91, 998–1010 (2012). (PMID: 23200864351659110.1016/j.ajhg.2012.10.011) ; Brumback, A. C. et al. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry 23, 2078–2089 (2018). (PMID: 2911219110.1038/mp.2017.213) ; Rinaldi, T., Kulangara, K., Antoniello, K. & Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl Acad. Sci. 104, 13501–13506 (2007). (PMID: 17675408194892010.1073/pnas.0704391104) ; Yang, Y. et al. RNF146 inhibits excessive autophagy by modulating the Wnt-β-catenin pathway in glutamate excitotoxicity injury. Front. Cell. Neurosci. 11 (2017). ; Kim, H. et al. Estrogen receptor activation contributes to RNF146 expression and neuroprotection in Parkinson’s disease models. Oncotarget 8 (2017). ; Shen, J., Yu, Z. & Li, N. The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of Axin1. Biochem. Biophys. Res. Commun. 503, 991–997 (2018). (PMID: 2993291810.1016/j.bbrc.2018.06.107) ; Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013). (PMID: 24090431385118910.1186/2040-2392-4-36) ; Ruzzo, E. K. et al. Inherited and De Novo genetic risk for autism impacts shared networks. Cell 178, 850–866.e826 (2019). (PMID: 31398340710290010.1016/j.cell.2019.07.015) ; Martin, P. M. et al. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol. Psychiatry 23, 467–475 (2018). (PMID: 2775207910.1038/mp.2016.184) ; Zhang, Y. et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry 10, 4 (2020). (PMID: 32066658702615710.1038/s41398-020-0699-8) ; Freese, J. L., Pino, D. & Pleasure, S. J. Wnt signaling in development and disease. Neurobiol. Dis. 38, 148–153 (2010). (PMID: 1976565910.1016/j.nbd.2009.09.003) ; Huang, H. & He, X. Wnt/β-catenin signaling: new (and old) players and new insights. Curr. Opin. Cell Biol. 20, 119–125 (2008). (PMID: 18339531239092410.1016/j.ceb.2008.01.009) ; Mulligan, K. A. & Cheyette, B. N. R. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol. 7, 774–787 (2012). (PMID: 23015196351858210.1007/s11481-012-9404-x) ; Brien, W. T. et al. Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791 (2004). (PMID: 10.1523/JNEUROSCI.4753-03.2004) ; Latapy, C., Rioux, V., Guitton, M. J. & Beaulieu, J. M. Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 367, 2460–2474 (2012). (PMID: 2282634510.1098/rstb.2012.0094) ; Fang, W.-Q. et al. Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep. 9, 1635–1643 (2014). (PMID: 2546624810.1016/j.celrep.2014.11.003) ; Cui, K. et al. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst. Nanoeng. 6, 49 (2020). (PMID: 34567661843319610.1038/s41378-020-0165-z) ; Peukert, D., Weber, S., Lumsden, A. & Scholpp, S. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol. 9, e1001218 (2011). (PMID: 22180728323673410.1371/journal.pbio.1001218) ; Mines, M. A., Yuskaitis, C. J., King, M. K., Beurel, E. & Jope, R. S. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE 5, e9706 (2010). (PMID: 20300527283879310.1371/journal.pone.0009706) ; Choi, C. H. et al. Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res. 1380, 106–119 (2011). (PMID: 2107830410.1016/j.brainres.2010.11.032) ; Arredondo, S. B., Valenzuela-Bezanilla, D., Mardones, M. D. & Varela-Nallar, L. Role of Wnt signaling in adult hippocampal neurogenesis in health and disease. Front. Cell Dev. Biol. 8, 860 (2020). (PMID: 33042988752500410.3389/fcell.2020.00860) ; McLeod, F. & Salinas, P. C. Wnt proteins as modulators of synaptic plasticity. Curr. Opin. Neurobiol. 53, 90–95 (2018). (PMID: 29975877624692210.1016/j.conb.2018.06.003) ; Rosso, S., Inestrosa, N. & Rosso, S. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci. 7 (2013). ; Okuda, T., Yu, L. M. Y., Cingolani, L. A., Kemler, R. & Goda, Y. β-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc. Natl Acad. Sci. 104, 13479–13484 (2007). (PMID: 17679699194893610.1073/pnas.0702334104) ; Sun, M. et al. Presynaptic contributions of chordin to hippocampal plasticity and spatial learning. J. Neurosci. 27, 7740 (2007). (PMID: 17634368667286510.1523/JNEUROSCI.1604-07.2007) ; Kim, K. C. et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem. 124, 832–843 (2013). (PMID: 2331169110.1111/jnc.12147) ; Kataoka, S. et al. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int. J. Neuropsychopharmacol. 16, 91–103 (2013). (PMID: 2209318510.1017/S1461145711001714)
  • Substance Nomenclature: EC 2.3.2.27 (Rnf146 protein, mouse) ; EC 2.3.2.27 (Ubiquitin-Protein Ligases) ; 614OI1Z5WI (Valproic Acid)
  • Entry Date(s): Date Created: 20230731 Date Completed: 20230908 Latest Revision: 20230921
  • Update Code: 20240514
  • PubMed Central ID: PMC10474298

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -