Zum Hauptinhalt springen

Long-term forecast of thermal mortality with climate warming in riverine amphipods.

Verberk, WCEP ; Hoefnagel, KN ; et al.
In: Global change biology, Jg. 29 (2023-09-01), Heft 17, S. 5033-5043
Online academicJournal

Titel:
Long-term forecast of thermal mortality with climate warming in riverine amphipods.
Autor/in / Beteiligte Person: Verberk, WCEP ; Hoefnagel, KN ; Peralta-Maraver, I ; Floury, M ; Rezende, EL
Link:
Zeitschrift: Global change biology, Jg. 29 (2023-09-01), Heft 17, S. 5033-5043
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2023
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.16834
Schlagwort:
  • Temperature
  • Acclimatization
  • Rivers
  • Netherlands
  • Environmental Monitoring
  • Climate Change
  • Global Warming
  • Amphipoda physiology
  • Heat-Shock Response
  • Aquatic Organisms physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2023 Sep; Vol. 29 (17), pp. 5033-5043. <i>Date of Electronic Publication: </i>2023 Jul 04.
  • MeSH Terms: Climate Change* ; Global Warming* ; Amphipoda* / physiology ; Heat-Shock Response* ; Aquatic Organisms* / physiology ; Temperature ; Acclimatization ; Rivers ; Netherlands ; Environmental Monitoring
  • References: Amarasekare, P., & Savage, V. (2012). A framework for elucidating the temperature dependence of fitness. The American Naturalist, 179(2), 178-191. ; Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. ; Atkinson, D., & Sibly, R. M. (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology & Evolution, 12(6), 235-239. ; Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M. F., Huijbregts, M. A., & Schipper, A. M. (2021). Threats of global warming to the world's freshwater fishes. Nature Communications, 12(1), 1701. ; Bates, D., Mächler, M., Bolker, B., & Walker, S. (2016). lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-12. https://cran.r-project.org/web/packages/lme4/index.html. ; Bennett, J. M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A. C., Araújo, M. B., Hawkins, B. A., Keith, S., Kühn, I., Rahbek, C., Rodríguez, L., Singer, A., Villalobos, F., Olalla-Tárraga, M. Á., & Morales-Castilla, I. (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5(1), 1-7. ; Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371), eaam7240. ; Calosi, P., Bilton, D. T., & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biology Letters, 4(1), 99-102. ; Comte, L., & Olden, J. D. (2017). Climatic vulnerability of the world's freshwater and marine fishes. Nature Climate Change, 7(10), 718-722. ; Dejours, P. (1981). Principles of comparative respiratory physiology. Elsevier, North-Holland Biomedical Press. ; Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668-6672. ; Ern, R. (2019). A mechanistic oxygen- and temperature-limited metabolic niche framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20180540. ; Ern, R., Norin, T., Gamperl, A. K., & Esbaugh, A. J. (2016). Oxygen dependence of upper thermal limits in fishes. Journal of Experimental Biology, 219(21), 3376-3383. ; Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society B: Biological Sciences, 282(1808), 20150401. ; Harrison, J. F., Greenlee, K. J., & Verberk, W. C. E. P. (2018). Functional hypoxia in insects: Definition, assessment, and consequences for physiology, ecology, and evolution. Annual Review of Entomology, 63, 303-325. ; Healy, T. M., & Schulte, P. M. (2012). Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). Journal of Comparative Physiology B, 182, 49-62. ; Hoffmann, A. A., Chown, S. L., & Clusella-Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27(4), 934-949. ; Huey, R. B., & Kingsolver, J. G. (2019). Climate warming, resource availability, and the metabolic meltdown of ectotherms. The American Naturalist, 194(6), E140-E150. ; Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla, R. M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S., DeGasperi, C. L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P., Hambright, K. D., … Rose, K. C. (2021). Widespread deoxygenation of temperate lakes. Nature, 594, 66-70. ; Jutfelt, F., Norin, T., Ern, R., Overgaard, J., Wang, T., McKenzie, D. J., Lefevre, S., Nilsson, G. E., Metcalfe, N. B., Hickey, A. J. R., Brijs, J., Speers-Roesch, B., Roche, D. G., Gamperl, A. K., Raby, G. D., Morgan, R., Esbaugh, A. J., Gräns, A., Axelsson, M., … Clark, T. D. (2018). Oxygen-and capacity-limited thermal tolerance: Blurring ecology and physiology. Journal of Experimental Biology, 221, jeb169615. ; Koopman, K. R., Collas, F. P., van der Velde, G., & Verberk, W. C. E. P. (2016). Oxygen can limit heat tolerance in freshwater gastropods: Differences between gill and lung breathers. Hydrobiologia, 763, 301-312. ; Leiva, F. P., Calosi, P., & Verberk, W. C. E. P. (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: A comparison between water-and air-breathers. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1778), 20190035. ; Maazouzi, C., Piscart, C., Legier, F., & Hervant, F. (2011). Ecophysiological responses to temperature of the “killer shrimp” Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 159(3), 268-274. ; Peralta-Maraver, I., & Rezende, E. L. (2021). Heat tolerance in ectotherms scales predictably with body size. Nature Climate Change, 11, 58-63. https://doi.org/10.1038/s41558-020-00938-y. ; Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108-111. ; Pörtner, H. O. (2010). Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213(6), 881-893. ; Pörtner, H.-O., Bock, C., & Mark, F. C. (2017). Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. Journal of Experimental Biology, 220, 2685-2696. ; Portner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-97. ; Pottier, P., Burke, S., Zhang, R. Y., Noble, D. W., Schwanz, L. E., Drobniak, S. M., & Nakagawa, S. (2022). Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecology Letters, 25(10), 2245-2268. ; R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.r-project.org. ; Reeze, B., van Winden, A., Postma, J., Pot, R., Hop, J., & Liefveld, W. (2017). Watersysteemrapportage Rijntakken 1990-2015. Ontwikkelingen waterkwaliteit en ecologie. Bart Reeze Water & Ecologie. ; Rezende, E. L., Bozinovic, F., Szilágyi, A., & Santos, M. (2020). Predicting temperature mortality and selection in natural drosophila populations. Science, 369(6508), 1242-1245. ; Rezende, E. L., Castañeda, L. E., & Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology, 28(4), 799-809. ; Rezende, E. L., Tejedo, M., & Santos, M. (2011). Estimating the adaptive potential of critical thermal limits: Methodological problems and evolutionary implications. Functional Ecology, 25(1), 111-121. ; Rubalcaba, J. G., Verberk, W. C. E. P., Hendriks, A. J., Saris, B., & Woods, H. A. (2020). Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31963-31968. ; Rutledge, C. J., & Beitinger, T. L. (1989). The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent-stream fishes. Environmental Biology of Fishes, 24, 137-143. ; Semsar-kazerouni, M., Boerrigter, J. G., & Verberk, W. C. E. P. (2020). Changes in heat stress tolerance in a freshwater amphipod following starvation: The role of oxygen availability, metabolic rate, heat shock proteins and energy reserves. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 245, 110697. ; Semsar-kazerouni, M., & Verberk, W. C. E. P. (2018). It's about time: Linkages between heat tolerance, thermal acclimation and metabolic rate at different temporal scales in the freshwater amphipod Gammarus fossarum Koch, 1836. Journal of Thermal Biology, 75, 31-37. ; Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D., Marshall, D. J., & Helmuth, B. S. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19(11), 1372-1385. ; Stebbing, T. R. (1899). Revision of Amphipoda. Journal of Natural History, 3(16), 350. ; Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science, 301(5629), 65. ; Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344-358. ; Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2(9), 686-690. ; Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148. ; Truebano, M., Fenner, P., Tills, O., Rundle, S. D., & Rezende, E. L. (2018). Thermal strategies vary with life history stage. Journal of Experimental Biology, 221(8), jeb171629. ; Verberk, W. C. E. P., & Bilton, D. T. (2013). Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters, 9(5), 20130473. ; Verberk, W. C. E. P., Bilton, D. T., Calosi, P., & Spicer, J. I. (2011). Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology, 92(8), 1565-1572. ; Verberk, W. C. E. P., Calosi, P., Spicer, J. I., Kehl, S., & Bilton, D. T. (2018). Does plasticity in thermal tolerance trade off with inherent tolerance? The influence of setal tracheal gills on thermal tolerance and its plasticity in a group of European diving beetles. Journal of Insect Physiology, 106, 163-171. ; Verberk, W. C. E. P., Durance, I., Vaughan, I. P., & Ormerod, S. J. (2016). Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology, 22(5), 1769-1778. ; Verberk, W. C. E. P., Hoefnagel, K. N., Peralta-Maraver, I., Floury, M., & Rezende, E. L. (2023). Data from: Long-term forecast of thermal mortality with climate warming in riverine amphipods (version 1.1.) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7640253. ; Verberk, W. C. E. P., Leuven, R. S., van der Velde, G., & Gabel, F. (2018). Thermal limits in native and alien freshwater peracarid Crustacea: The role of habitat use and oxygen limitation. Functional Ecology, 32(4), 926-936. ; Verberk, W. C. E. P., Overgaard, J., Ern, R., Bayley, M., Wang, T., Boardman, L., & Terblanche, J. S. (2016). Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 64-78. ; Woods, H. A., Moran, A. L., Atkinson, D., Audzijonyte, A., Berenbrink, M., Borges, F. O., Burnett, K. G., Burnett, L. E., Coates, C. J., Collin, R., Costa-Paiva, E. M., Duncan, M. I., Ern, R., Laetz, E. M. J., Levin, L. A., Lindmark, M., Lucey, N. M., McCormick, L. R., Pierson, J. J., … Verberk, W. C. E. P. (2022). Integrative approaches to understanding organismal responses to aquatic deoxygenation. The Biological Bulletin, 243(2), 85-103.
  • Grant Information: ANID PIA/BASAL FB0002; 1211113 Fondo Nacional de Desarrollo Científico y Tecnológico; Juan de la Cierva-formación Fellowship Ministerio de Ciencia e Inovación; 016.161.321 Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  • Contributed Indexing: Keywords: climate vulnerability; heat tolerance; oxygen limitation; thermal biology; thermal safety margin; water quality
  • Entry Date(s): Date Created: 20230704 Date Completed: 20230802 Latest Revision: 20240227
  • Update Code: 20240227

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -