Zum Hauptinhalt springen

Blocking tri-methylguanosine synthase 1 (TGS1) stops anchorage-independent growth of canine sarcomas.

Zucko, D ; Boris-Lawrie, K
In: Cancer gene therapy, Jg. 30 (2023-09-01), Heft 9, S. 1274
Online academicJournal

Titel:
Blocking tri-methylguanosine synthase 1 (TGS1) stops anchorage-independent growth of canine sarcomas.
Autor/in / Beteiligte Person: Zucko, D ; Boris-Lawrie, K
Link:
Zeitschrift: Cancer gene therapy, Jg. 30 (2023-09-01), Heft 9, S. 1274
Veröffentlichung: <2002->: London : Nature Publishing Group ; <i>Original Publication</i>: Norwalk, CT : Appleton & Lange, c1994-, 2023
Medientyp: academicJournal
ISSN: 1476-5500 (electronic)
DOI: 10.1038/s41417-023-00636-9
Schlagwort:
  • Animals
  • Dogs
  • Humans
  • RNA, Messenger genetics
  • RNA
  • Guanosine metabolism
  • TOR Serine-Threonine Kinases metabolism
  • RNA Caps genetics
  • Eukaryotic Initiation Factor-4E genetics
  • Sarcoma genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Cancer Gene Ther] 2023 Sep; Vol. 30 (9), pp. 1274-1284. <i>Date of Electronic Publication: </i>2023 Jun 29.
  • MeSH Terms: Eukaryotic Initiation Factor-4E* / genetics ; Sarcoma* / genetics ; Animals ; Dogs ; Humans ; RNA, Messenger / genetics ; RNA ; Guanosine / metabolism ; TOR Serine-Threonine Kinases / metabolism ; RNA Caps / genetics
  • References: Boris-Lawrie K, Singh G, Osmer PS, Zucko D, Staller S, Heng X. Anomalous HIV-1 RNA, How Cap-methylation segregates viral transcripts by form and function. Viruses. 2022;14:935. (PMID: 35632676914509210.3390/v14050935) ; Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel). 2021;13:6185. (PMID: 3494480510.3390/cancers13246185) ; Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328:1172–6. (PMID: 20508131289339010.1126/science.1187532) ; Sonenberg N. eIF4E, the mRNA cap-binding protein: From basic discovery to translational research. Biochem Cell Biol. 2008;86:178–83. (PMID: 1844363110.1139/O08-034) ; Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci. 2019;20:755. (PMID: 30754640638704210.3390/ijms20030755) ; Ding L, Congwei L, Bei Q, Tao Y, Ruiguo W, Heze Y, et al. mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget. 2016;7:50805–13. https://doi.org/10.18632/oncotarget.9305. (PMID: 10.18632/oncotarget.9305271773305226621) ; Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol. 2019;59:125–32. (PMID: 3132328810.1016/j.semcancer.2019.07.009) ; Zheng Y, Jiang Y. mTOR Inhibitors at a Glance. Mol Cell Pharmacol. 2015;7:15–20. (PMID: 271346954849280) ; Singh G, Seufzer B, Song Z, Zucko D, Heng X, Boris-Lawrie K. HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR. Proc Natl Acad Sci USA. 2022;119:e2105153118. (PMID: 3494971210.1073/pnas.2105153118) ; Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, Baudrey S, et al. Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Res. 2014;42:8663–77. (PMID: 25013170411779310.1093/nar/gku580) ; Yedavalli VS, Jeang KT. Trimethylguanosine capping selectively promotes expression of Rev-dependent HIV-1 RNAs. Proc Natl Acad Sci USA. 2010;107:14787–92. (PMID: 20679221293044110.1073/pnas.1009490107) ; Sharma A, Yilmaz A, Marsh K, Cochrane A, Boris-Lawrie K. Thriving under stress: selective translation of HIV-1 structural protein mRNA during Vpr-mediated impairment of eIF4E translation activity. PLoS Pathog. 2012;8:e1002612. (PMID: 22457629331083610.1371/journal.ppat.1002612) ; Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonné R. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell. 2002;9:891–901. (PMID: 1198317910.1016/S1097-2765(02)00484-7) ; Franke J, Gehlen J, Ehrenhofer-Murray AE. Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1. J Cell Sci. 2008;121:3553–60. https://doi.org/10.1242/jcs.033308. (PMID: 10.1242/jcs.03330818840651) ; Rutkowska-Wlodarczyk I, Stepinski J, Dadlez M, Darzynkiewicz E, Stolarski R, Niedzwiecka A. Structural changes of eIF4E upon binding to the mRNA 5’ monomethylguanosine and trimethylguanosine Cap. Biochemistry. 2008;47:2710–20. (PMID: 1822036410.1021/bi701168z) ; Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonné R, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011;30:2205–18. (PMID: 21522132311764910.1038/emboj.2011.128) ; Strasser A, Dickmanns A, Lührmann R, Ficner R. Structural basis for m3G-cap-mediated nuclear import of spliceosomal UsnRNPs by snurportin1. EMBO J. 2005;24:2235–43. (PMID: 15920472117314210.1038/sj.emboj.7600701) ; Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol. 2006;13:509–16. (PMID: 1668016210.1038/nsmb1092) ; Singh G, Fritz SE, Seufzer B, Boris-Lawrie K. The mRNA encoding the JUND tumor suppressor detains nuclear RNA-binding proteins to assemble polysomes that are unaffected by mTOR. J Biol Chem. 2020;295:7763–73. (PMID: 32312751726179310.1074/jbc.RA119.012005) ; Short JD, Pfarr CM. Translational regulation of the JunD messenger RNA. J Biol Chem. 2002;277:32697–705. (PMID: 1210521610.1074/jbc.M204553200) ; Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget. 2016;7:42716–39. (PMID: 27034008517316810.18632/oncotarget.8446) ; Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: The translation trap. Biochim Biophys Acta Rev Cancer. 2017;1868:510–20. (PMID: 2896587010.1016/j.bbcan.2017.09.006) ; Zucchini C, Rocchi A, Manara MC, De Sanctis P, Capanni C, Bianchini M, et al. Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol. 2008;32:17–31. (PMID: 18097539) ; Gulliver C, Hoffmann R, Baillie GS. The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Sci OA. 2020;7:FSO650. (PMID: 33437516778718010.2144/fsoa-2020-0140) ; Lee CG, Eki T, Okumura K, Nogami M, Soares Vda C, Murakami Y, et al. The human RNA helicase A (DDX9) gene maps to the prostate cancer susceptibility locus at chromosome band 1q25 and its pseudogene (DDX9P) to 13q22, respectively. Somat Cell Mol Genet. 1999;25:33–9. (PMID: 1092570210.1023/B:SCAM.0000007138.44216.3a) ; Wei X, Pacyna-Gengelbach M, Schlüns K, An Q, Gao Y, Cheng S, Petersen I, et al. Analysis of the RNA helicase A gene in human lung cancer. Oncol Rep. 2004;11:253–8. (PMID: 14654934) ; Shi F, Cao S, Zhu Y, Yu Q, Guo W, Zhang S. High expression of DHX9 promotes the growth and metastasis of hepatocellular carcinoma. J Clin Lab Anal. 2021;35:e24052 https://doi.org/10.1002/jcla.24052. (PMID: 10.1002/jcla.24052346769158649379) ; Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget. 2016;7:3084–97. (PMID: 2662521110.18632/oncotarget.6413) ; Zhong X, Safa AR. Phosphorylation of RNA helicase A by DNA-dependent protein kinase is indispensable for expression of the MDR1 gene product P-glycoprotein in multidrug-resistant human leukemia cells. Biochemistry. 2007;46:5766–75. (PMID: 1744173110.1021/bi700063b) ; Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto MP. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740–57. (PMID: 26450900474163610.18632/oncotarget.5033) ; Schlegel BP, Starita LM, Parvin JD. Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells. Oncogene. 2003;22:983–91. (PMID: 1259238510.1038/sj.onc.1206195) ; Cheng DD, Zhang HZ, Yuan JQ, Li SJ, Yang QC, Fan CY. Minichromosome maintenance protein 2 and 3 promote osteosarcoma progression via DHX9 and predict poor patient prognosis. Oncotarget. 2017;8:26380–93. (PMID: 28460433543226510.18632/oncotarget.15474) ; Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal. 2007;19:2013–23. (PMID: 1768175310.1016/j.cellsig.2007.06.023) ; Zhong X, Safa AR. RNA helicase A in the MEF1 transcription factor complex up-regulates the MDR1 gene in multidrug-resistant cancer cells. J Biol Chem. 2004;279:17134–41. (PMID: 1476979610.1074/jbc.M311057200) ; Myöhänen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem. 2001;276:1634–42. (PMID: 1103834810.1074/jbc.M004481200) ; Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63. (PMID: 1621321210.1016/j.cell.2005.07.034) ; Halaby MJ, Harris BR, Miskimins WK, Cleary MP, Yang DQ. Deregulation of Internal Ribosome Entry Site-Mediated p53 Translation in Cancer Cells with Defective p53 Response to DNA Damage. Mol Cell Biol. 2015;35:4006–17. (PMID: 26391949462806210.1128/MCB.00365-15) ; Chakraborty P, Hiom K. DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat Commun. 2021;12:4126. (PMID: 34226554825776910.1038/s41467-021-24341-z) ; Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 2014;55:69–85. (PMID: 2493603110.1093/ilar/ilu009) ; Gardner HL, Sivaprakasam K, Briones N, Zismann V, Perdigones N, Drenner, et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2019;2:266. ; Makielski KM, Mills LJ, Sarver AL, Henson MS, Spector LG, Naik S, et al. Risk Factors for Development of Canine and Human Osteosarcoma: A Comparative Review. Vet Sci. 2019;6:48. (PMID: 663145010.3390/vetsci6020048) ; Scott MC, Sarver AL, Gavin KJ, Thayanithy V, Getzy DM, Newman RA, et al. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. Bone. 2011;49:356–67. (PMID: 21621658314325510.1016/j.bone.2011.05.008) ; Scott MC, Tomiyasu H, Garbe JR, Cornax I, Amaya C, O’Sullivan MG, et al. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior. Dis Model Mech. 2016;9:1435–44. (PMID: 278748355200896) ; Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, et al. Canine and murine models of osteosarcoma. Vet Pathol. 2022;59:399–414. (PMID: 35341404929037810.1177/03009858221083038) ; Cheng N, Schulte AJ, Santosa F, Kim JH. Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma. Brief Bioinform. 2021;22:bbaa252. (PMID: 3307882510.1093/bib/bbaa252) ; Griffin MA, Culp WTN, Rebhun RB. Canine and feline haemangiosarcoma. Vet Rec. 2021;189:e585 https://doi.org/10.1002/vetr.585. (PMID: 10.1002/vetr.58534213807) ; Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet Oncol. 2010;11:983–91. (PMID: 2053794910.1016/S1470-2045(10)70023-1) ; Megquier K, Turner-Maier J, Swofford R, Kim JH, Sarver AL, Wang C, et al. Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma. Mol Cancer Res. 2019;17:2410–21. (PMID: 31570656706751310.1158/1541-7786.MCR-19-0221) ; Schappa JT, Frantz AM, Gorden BH, Dickerson EB, Vallera DA, Modiano JF. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors. Int J Cancer. 2013;133:1936–44. (PMID: 23553371398527510.1002/ijc.28187) ; Dangel AW, Hull S, Roberts TM, Boris-Lawrie K. Nuclear interactions are necessary for translational enhancement by spleen necrosis virus RU5. J Virol. 2002;76:3292–300. (PMID: 1188455413602910.1128/JVI.76.7.3292-3300.2002) ; Rotem A, Janzer A, Izar B, Ji Z, Doench JG, Garraway LA, et al. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proc Natl Acad Sci USA. 2015;112:5708–13. (PMID: 25902495442641210.1073/pnas.1505979112) ; Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, et al. The soft agar colony formation assay. J Vis Exp. 2014;:e51998. https://doi.org/10.3791/51998 . ; Gribling-Burrer AS, Eriani G, Allmang C. Modification of selenoprotein mRNAs by cap tri-methylation. Methods Mol Biol. 2018;1661:125–41. (PMID: 2891704110.1007/978-1-4939-7258-6_9) ; Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene. 2008;27:4757–67. (PMID: 18427548272665710.1038/onc.2008.120) ; Schoenberg DR, Maquat LE. Re-capping the message. Trends Biochemi Sci. 2009;34:435–42. (PMID: 10.1016/j.tibs.2009.05.003) ; Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol. 2020;17:1239–51. (PMID: 32496897754970910.1080/15476286.2020.1766179)
  • Substance Nomenclature: 0 (8-methylguanosine) ; 0 (Eukaryotic Initiation Factor-4E) ; 0 (RNA, Messenger) ; 63231-63-0 (RNA) ; 12133JR80S (Guanosine) ; EC 2.7.11.1 (TOR Serine-Threonine Kinases) ; 0 (RNA Caps)
  • Entry Date(s): Date Created: 20230629 Date Completed: 20230918 Latest Revision: 20230922
  • Update Code: 20231215
  • PubMed Central ID: PMC10501901

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -