Zum Hauptinhalt springen

Reaction-Diffusion Modeling of E. coli Colony Growth Based on Nutrient Distribution and Agar Dehydration.

He, C ; Han, L ; et al.
In: Bulletin of mathematical biology, Jg. 85 (2023-05-31), Heft 7, S. 61
Online academicJournal

Titel:
Reaction-Diffusion Modeling of E. coli Colony Growth Based on Nutrient Distribution and Agar Dehydration.
Autor/in / Beteiligte Person: He, C ; Han, L ; Harris, DC ; Bayakhmetov, S ; Wang, X ; Kuang, Y
Link:
Zeitschrift: Bulletin of mathematical biology, Jg. 85 (2023-05-31), Heft 7, S. 61
Veröffentlichung: New York, NY : Springer ; <i>Original Publication</i>: New York, Pergamon Press., 2023
Medientyp: academicJournal
ISSN: 1522-9602 (electronic)
DOI: 10.1007/s11538-023-01163-2
Schlagwort:
  • Humans
  • Agar
  • Dehydration
  • Mathematical Concepts
  • Models, Biological
  • Escherichia coli
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Bull Math Biol] 2023 May 31; Vol. 85 (7), pp. 61. <i>Date of Electronic Publication: </i>2023 May 31.
  • MeSH Terms: Models, Biological* ; Escherichia coli* ; Humans ; Agar ; Dehydration ; Mathematical Concepts
  • References: Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134. (PMID: 10.1038/nature03461) ; Blanchard AE, Lu T (2015) Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Syst Biol 9(1):1–13. (PMID: 10.1186/s12918-015-0188-5) ; Caboussat A, Glowinski R (2009) A numerical method for a non-smooth advection–diffusion problem arising in sand mechanics. Commun Pure Appl Anal 8(1):161. (PMID: 10.3934/cpaa.2009.8.161) ; Chacón JM, Möbius W, Harcombe WR (2018) The spatial and metabolic basis of colony size variation. ISME J 12(3):669–680. (PMID: 10.1038/s41396-017-0038-0) ; Chen W, Nie Q, Yi T-M, Chou C-S (2016) Modelling of yeast mating reveals robustness strategies for cell-cell interactions. PLoS Comput Biol 12(7):1004988. (PMID: 10.1371/journal.pcbi.1004988) ; Cole JA, Kohler L, Hedhli J, Luthey-Schulten Z (2015) Spatially-resolved metabolic cooperativity within dense bacterial colonies. BMC Syst Biol 9(1):1–17. (PMID: 10.1186/s12918-015-0155-1) ; Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195(7):1371–1380. (PMID: 10.1128/JB.02273-12) ; Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Marine Biol Assoc UK 48(3):689–733. (PMID: 10.1017/S0025315400019238) ; Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342. (PMID: 10.1038/35002131) ; He C, Bayakhmetov S, Harris D, Kuang Y, Wang X (2020) A predictive reaction-diffusion based model of E. coli colony growth control. IEEE Control Syst Lett 5(6):1952–1957. (PMID: 10.1109/LCSYS.2020.3046612) ; Huang J, Lu G, Ruan S (2003) Existence of traveling wave solutions in a diffusive predator-prey model. J Math Biol 46(2):132–152. (PMID: 10.1007/s00285-002-0171-9) ; Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modeling spatio-temporal patterns generated bybacillus subtilis. J Theor Biol 188(2):177–185. (PMID: 10.1006/jtbi.1997.0462) ; Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620. (PMID: 10.1126/science.1179047) ; Kreft J-U, Booth G, Wimpenny JW (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144(12):3275–3287. (PMID: 10.1099/00221287-144-12-3275) ; Lacasta A, Cantalapiedra I, Auguet C, Penaranda A, Ramirez-Piscina L (1999) Modeling of spatiotemporal patterns in bacterial colonies. Phys Rev E 59(6):7036. (PMID: 10.1103/PhysRevE.59.7036) ; Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147. (PMID: 10.1137/S1052623496303470) ; Langebrake JB, Dilanji GE, Hagen SJ, De Leenheer P (2014) Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 363:53–61. (PMID: 10.1016/j.jtbi.2014.07.033) ; Leyva JF, Málaga C, Plaza RG (2013) The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion. Physica A 392(22):5644–5662. (PMID: 10.1016/j.physa.2013.07.022) ; Li B (2018) Multiple invasion speeds in a two-species integro-difference competition model. J Math Biol 76(7):1975–2009. (PMID: 10.1007/s00285-017-1200-z) ; Li X, Gonzalez F, Esteves N, Scharf BE, Chen J (2020) Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PLoS Comput Biol 16(3):1007236. (PMID: 10.1371/journal.pcbi.1007236) ; Luo N, Wang S, You L (2019) Synthetic pattern formation. Biochemistry 58(11):1478–1483. (PMID: 10.1021/acs.biochem.8b01242) ; Mansour M (2008) Traveling wave solutions of a nonlinear reaction–diffusion-chemotaxis model for bacterial pattern formation. Appl Math Model 32(2):240–247. (PMID: 10.1016/j.apm.2006.11.013) ; Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168(1):498–506. (PMID: 10.1016/0378-4371(90)90402-E) ; Melke P, Sahlin P, Levchenko A, Jönsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6(6):1000819. (PMID: 10.1371/journal.pcbi.1000819) ; Mimura M, Tsujikawa T (1996) Aggregating pattern dynamics in a chemotaxis model including growth. Physica A 230(3–4):499–543. (PMID: 10.1016/0378-4371(96)00051-9) ; Mimura M, Sakaguchi H, Matsushita M (2000) Reaction–diffusion modelling of bacterial colony patterns. Physica A 282(1–2):283–303. (PMID: 10.1016/S0378-4371(00)00085-6) ; Nikolopoulou E, Johnson L, Harris D, Nagy J, Stites E, Kuang Y (2018) Tumour-immune dynamics with an immune checkpoint inhibitor. Lett Biomath 5(2):137–159. (PMID: 10.30707/LiB5.2Nikolopoulou) ; Ohgiwari M, Matsushita M, Matsuyama T (1992) Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61(3):816–822. (PMID: 10.1143/JPSJ.61.816) ; Peñil Cobo M, Libro S, Marechal N, D’Entremont D, Peñil Cobo D, Berkmen M (2018) Visualizing bacterial colony morphologies using time-lapse imaging chamber mocha. J Bacteriol 200(2):00413–17. (PMID: 10.1128/JB.00413-17) ; Peterson JR, Cole JA, Luthey-Schulten Z (2017) Parametric studies of metabolic cooperativity in Escherichia coli colonies: strain and geometric confinement effects. PLoS ONE 12(8):0182570. (PMID: 10.1371/journal.pone.0182570) ; Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626):514–517. (PMID: 10.1038/nature19841) ; Rudge TJ, Steiner PJ, Phillips A, Haseloff J (2012) Computational modeling of synthetic microbial biofilms. ACS Synth Biol 1(8):345–352. (PMID: 10.1021/sb300031n) ; Schlüter DK, Ramis-Conde I, Chaplain MA (2015) Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J R Soc Interface 12(103):20141080. (PMID: 10.1098/rsif.2014.1080) ; Sekine R, Shibata T, Ebisuya M (2018) Synthetic mammalian pattern formation driven by differential diffusivity of nodal and lefty. Nat Commun 9(1):1–11. (PMID: 10.1038/s41467-018-07847-x) ; Shapiro JA (1995) The significances of bacterial colony patterns. BioEssays 17(7):597–607. (PMID: 10.1002/bies.950170706) ; Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synthetic Biol 1(1):29–41. (PMID: 10.1021/sb200016s) ; Srinivasan S, Kaplan CN, Mahadevan L (2019) A multiphase theory for spreading microbial swarms and films. Elife 8:42697. (PMID: 10.7554/eLife.42697) ; Stepien TL, Smith HL (2015) Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete Contin Dyn Syst 35(7):3203. (PMID: 10.3934/dcds.2015.35.3203) ; Stepien TL, Rutter EM, Kuang Y (2018) Traveling waves of a go-or-grow model of glioma growth. SIAM J Appl Math 78(3):1778–1801. (PMID: 10.1137/17M1146257) ; Su P-T, Liao C-T, Roan J-R, Wang S-H, Chiou A, Syu W-J (2012) Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 7(11):48098. (PMID: 10.1371/journal.pone.0048098) ; Tyson JJ, Brazhnik PK (2000) On traveling wave solutions of fisher’s equation in two spatial dimensions. SIAM J Appl Math 60(2):371–391. (PMID: 10.1137/S0036139997325497) ; Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47(1):23–55. (PMID: 10.1007/s00285-002-0190-6) ; Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T (2019) Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife 8:41093. (PMID: 10.7554/eLife.41093) ; Wimpenny JW (1979) The growth and form of bacterial colonies. Microbiology 114(2):483–486. ; Wu F, He C, Fang X, Baez J, Ohnmacht T, Zhang Q, Chen X, Allison KR, Kuang Y, Wang X (2019) A synthetic biology approach to sequential stripe patterning and somitogenesis. bioRxiv 825406. ; Zhang L, Lander AD, Nie Q (2012) A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst Biol 6(1):1–13. (PMID: 10.1186/1752-0509-6-93)
  • Grant Information: R01 GM131405 United States GM NIGMS NIH HHS
  • Contributed Indexing: Keywords: Bacterial colony; Mathematical modeling; Nutrient distribution; Reaction–diffusion models; Traveling wave
  • Substance Nomenclature: 9002-18-0 (Agar)
  • Entry Date(s): Date Created: 20230531 Date Completed: 20230602 Latest Revision: 20230622
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -