Zum Hauptinhalt springen

The evolution of lung cancer and impact of subclonal selection in TRACERx.

Frankell, AM ; Dietzen, M ; et al.
In: Nature, Jg. 616 (2023-04-01), Heft 7957, S. 525-533
Online academicJournal

Titel:
The evolution of lung cancer and impact of subclonal selection in TRACERx.
Autor/in / Beteiligte Person: Frankell, AM ; Dietzen, M ; Al Bakir, M ; Lim, EL ; Karasaki, T ; Ward, S ; Veeriah, S ; Colliver, E ; Huebner, A ; Bunkum, A ; Hill, MS ; Grigoriadis, K ; Moore, DA ; Black, JRM ; Liu, WK ; Thol, K ; Pich, O ; Watkins, TBK ; Naceur-Lombardelli, C ; Cook, DE ; Salgado, R ; Wilson, GA ; Bailey, C ; Angelova, M ; Bentham, R ; Martínez-Ruiz, C ; Abbosh, C ; Nicholson, AG ; Le Quesne, J ; Biswas, D ; Rosenthal, R ; Puttick, C ; Hessey, S ; Lee, C ; Prymas, P ; Toncheva, A ; Smith, J ; Xing, W ; Nicod, J ; Price, G ; Kerr, KM ; Naidu, B ; Middleton, G ; Blyth, KG ; Fennell, DA ; Forster, MD ; Lee, SM ; Falzon, M ; Hewish, M ; Shackcloth, MJ ; Lim, E ; Benafif, S ; Russell, P ; Boleti, E ; Krebs, MG ; Lester, JF ; Papadatos-Pastos, D ; Ahmad, T ; Thakrar, RM ; Lawrence, D ; Navani, N ; Janes, SM ; Dive, C ; Blackhall, FH ; Summers, Y ; Cave, J ; Marafioti, T ; Herrero, J ; Quezada, SA ; Peggs, KS ; Schwarz, RF ; Van Loo, P ; Miedema, DM ; Birkbak, NJ ; Hiley, CT ; Hackshaw, A ; Zaccaria, S ; Jamal-Hanjani, M ; McGranahan, N ; Swanton, C
Link:
Zeitschrift: Nature, Jg. 616 (2023-04-01), Heft 7957, S. 525-533
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-05783-5
Schlagwort:
  • Humans
  • Adenocarcinoma of Lung etiology
  • Adenocarcinoma of Lung genetics
  • Adenocarcinoma of Lung pathology
  • Mutation
  • Neoplasm Recurrence, Local genetics
  • Phylogeny
  • Treatment Outcome
  • Smoking genetics
  • Smoking physiopathology
  • Mutagenesis
  • DNA Copy Number Variations
  • Carcinoma, Non-Small-Cell Lung etiology
  • Carcinoma, Non-Small-Cell Lung genetics
  • Carcinoma, Non-Small-Cell Lung pathology
  • Lung Neoplasms etiology
  • Lung Neoplasms genetics
  • Lung Neoplasms pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Corporate Authors: TRACERx Consortium
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2023 Apr; Vol. 616 (7957), pp. 525-533. <i>Date of Electronic Publication: </i>2023 Apr 12.
  • MeSH Terms: Carcinoma, Non-Small-Cell Lung* / etiology ; Carcinoma, Non-Small-Cell Lung* / genetics ; Carcinoma, Non-Small-Cell Lung* / pathology ; Lung Neoplasms* / etiology ; Lung Neoplasms* / genetics ; Lung Neoplasms* / pathology ; Humans ; Adenocarcinoma of Lung / etiology ; Adenocarcinoma of Lung / genetics ; Adenocarcinoma of Lung / pathology ; Mutation ; Neoplasm Recurrence, Local / genetics ; Phylogeny ; Treatment Outcome ; Smoking / genetics ; Smoking / physiopathology ; Mutagenesis ; DNA Copy Number Variations
  • Comments: Comment in: Nature. 2023 Apr;616(7957):435-436. (PMID: 37045956)
  • References: Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). (PMID: 3353833810.3322/caac.21660) ; Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012). (PMID: 2239765010.1056/NEJMoa11132054878653) ; Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017). (PMID: 2844511210.1056/NEJMoa1616288) ; Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell 173, 595–610.e11 (2018). (PMID: 2965689410.1016/j.cell.2018.03.0435938372) ; Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013). (PMID: 2407185110.1038/ng.27624320046) ; Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016). (PMID: 2678060910.1038/ng.34894934603) ; Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018). (PMID: 3019040810.1126/science.aat71716329287) ; Reiter, J. G. et al. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer 19, 639–650 (2019). (PMID: 3145589210.1038/s41568-019-0185-x6816333) ; Al Bakir, M. et al. The evolution of non-small lung cancer metastases in TRACERx. Nature https://doi.org/10.1038/s41586-023-05729-x (2023). ; Rekhtman, N. et al. Unsuspected collision of synchronous lung adenocarcinomas: a potential cause of aberrant driver mutation profiles. J. Thorac. Oncol. 9, e1–e3 (2014). (PMID: 2434610410.1097/JTO.0b013e3182a471c3) ; Grigoriadis, K. et al. CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-2158/v1 (2023). ; Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014). (PMID: 2442962810.1038/nature129814975511) ; Zaccaria, S. & Raphael, B. J. Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data. Nat. Commun. 11, 4301 (2020). (PMID: 3287931710.1038/s41467-020-17967-y7468132) ; Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020). (PMID: 3300451410.1126/science.aba8347) ; Pirie, K. et al. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet 381, 133–141 (2013). (PMID: 2310725210.1016/S0140-6736(12)61720-63547248) ; Byers, T. E., Vena, J. E. & Rzepka, T. F. Predilection of lung cancer for the upper lobes: an epidemiologic inquiry. J. Natl Cancer Inst. 72, 1271–1275 (1984). (PMID: 6328090) ; Lee, B. W., Wain, J. C., Kelsey, K. T., Wiencke, J. K. & Christiani, D. C. Association between diet and lung cancer location. Am. J. Respir. Crit. Care Med. 158, 1197–1203 (1998). (PMID: 976928210.1164/ajrccm.158.4.9804089) ; Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017). (PMID: 2905634610.1016/j.cell.2017.09.0425720395) ; Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020). (PMID: 3287949410.1038/s41586-020-2698-67611706) ; Mina, M. et al. Conditional selection of genomic alterations dictates cancer evolution and oncogenic dependencies. Cancer Cell 32, 155–168.e6 (2017). (PMID: 2875699310.1016/j.ccell.2017.06.010) ; de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014). (PMID: 2530163010.1126/science.12534624636050) ; Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018). (PMID: 3017780410.1038/s41559-018-0642-z6152905) ; Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018). (PMID: 3001317910.1038/s41588-018-0165-16072608) ; Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014). (PMID: 2443604910.1158/2159-8290.CD-13-02854293454) ; Satas, G. et al. DeCiFering the elusive cancer cell fraction in tumor heterogeneity and evolution. Cell Syst. https://doi.org/10.1016/j.cels.2021.07.006 (2023). ; Martínez-Ruiz, C. et al. Genomic–transcriptomic evolution in lung cancer and metastasis. Nature https://doi.org/10.1038/s41586-023-05706-4 (2023). ; Tarabichi, M. et al. Neutral tumor evolution? Nat. Genet. 50, 1630–1633 (2018). (PMID: 3037407510.1038/s41588-018-0258-x6548558) ; Heide, T. et al. Reply to ‘Neutral tumor evolution?’. Nat. Genet. 50, 1633–1637 (2018). (PMID: 3037407310.1038/s41588-018-0256-z) ; Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018). (PMID: 2962505310.1016/j.cell.2018.02.0606029450) ; Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021). (PMID: 3383137510.1016/j.cell.2021.03.0098054914) ; Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). (PMID: 3202501310.1038/s41586-019-1907-77054212) ; Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–4014 (2013). (PMID: 2341233710.1073/pnas.12197471103593922) ; Shain, A. H. et al. The genetic evolution of metastatic uveal melanoma. Nat. Genet. 51, 1123–1130 (2019). (PMID: 3125397710.1038/s41588-019-0440-96632071) ; Murugaesu, N. et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 5, 821–831 (2015). (PMID: 2600380110.1158/2159-8290.CD-15-04124529488) ; Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014). (PMID: 2530163110.1126/science.12569304354858) ; Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015). (PMID: 2609904510.1038/nm.38864500826) ; Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594.e12 (2018). (PMID: 2965689510.1016/j.cell.2018.03.0575938365) ; Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623.e17 (2018). (PMID: 2965689110.1016/j.cell.2018.02.0205927631) ; Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020). (PMID: 3199685010.1038/s41586-020-1961-17021511) ; Berenblum, I. & Shubik, P. A new, quantitative, approach to the study of the stages of chemical carcinogenesis in the mouse’s skin. Br. J. Cancer 1, 383–391 (1947). (PMID: 1890631610.1038/bjc.1947.362007527) ; Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). (PMID: 3042308610.1093/bioinformatics/bty5606129281) ; Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 1945116810.1093/bioinformatics/btp3242705234) ; Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015). (PMID: 2569782010.1093/bioinformatics/btv0984765878) ; McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). (PMID: 2064419910.1101/gr.107524.1102928508) ; Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 1950594310.1093/bioinformatics/btp3522723002) ; Bergmann, E. A., Chen, B.-J., Arora, K., Vacic, V. & Zody, M. C. Conpair: concordance and contamination estimator for matched tumor–normal pairs. Bioinformatics 32, 3196–3198 (2016). (PMID: 2735469910.1093/bioinformatics/btw3895048070) ; Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012). (PMID: 2230076610.1101/gr.129684.1113290792) ; Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013). (PMID: 2339601310.1038/nbt.25143833702) ; Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). (PMID: 2060168510.1093/nar/gkq6032938201) ; Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019). (PMID: 3037187810.1093/nar/gky1015) ; Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014). (PMID: 2501710510.1038/ng.30364753679) ; Cheng, J. et al. Single-cell copy number variation detection. Genome Biol. 12, R80 (2011). (PMID: 2185460710.1186/gb-2011-12-8-r803245619) ; Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010). (PMID: 2083753310.1073/pnas.10098431072947907) ; Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015). (PMID: 2531906210.1093/annonc/mdu479) ; Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013). (PMID: 2344642210.1038/nature119354636055) ; Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013). (PMID: 2330377710.1093/nar/gks14433616734) ; Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 3202501810.1038/s41586-020-1943-37054213) ; Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016). (PMID: 2689917010.1186/s13059-016-0893-44762164) ; Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. Hierarchical dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006). (PMID: 10.1198/016214506000000302) ; Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022). (PMID: 10.1126/science.abl9283) ; McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015). (PMID: 2587789210.1126/scitranslmed.aaa14084636056) ; Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014). (PMID: 2463341010.1038/nmeth.28834864026) ; Myers, M. A., Satas, G. & Raphael, B. J. CALDER: inferring phylogenetic trees from longitudinal tumor samples. Cell Syst. 8, 514–522.e5 (2019). (PMID: 3122956010.1016/j.cels.2019.05.0107263382) ; Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015). (PMID: 2578623510.1186/s13059-015-0602-84359439) ; El-Kebir, M., Oesper, L., Acheson-Field, H. & Raphael, B. J. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31, i62–i70 (2015). (PMID: 2607251010.1093/bioinformatics/btv2614542783) ; Satas, G. & Raphael, B. J. Tumor phylogeny inference using tree-constrained importance sampling. Bioinformatics 33, i152–i160 (2017). (PMID: 2888200210.1093/bioinformatics/btx2705870673) ; El-Kebir, M. et al. Complexity and algorithms for copy-number evolution problems. Algorithms Mol. Biol. 12, 13 (2017). (PMID: 2851577410.1186/s13015-017-0103-25433102) ; Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012). (PMID: 2254402210.1038/nbt.22034383288) ; Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015). (PMID: 2535551910.1093/nar/gku1075) ; Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014). (PMID: 2439035010.1038/nature129124048962) ; Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012). (PMID: 10.1038/nature11404) ; Collisson, E. et al. Comprehensive molecular profiling of lung adenocarcinoma: The Cancer Genome Atlas Research Network. Nature 511, 543–550 (2014). (PMID: 10.1038/nature13385) ; Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016). (PMID: 2715878010.1038/ng.35644884143) ; Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009). (PMID: 1956159010.1038/nprot.2009.86) ; Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013). ; Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010). (PMID: 2067607510.1038/nmeth0810-575) ; Berger, A. H. et al. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell 30, 214–228 (2016). (PMID: 2747804010.1016/j.ccell.2016.06.0225003022) ; Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337.e10 (2018). (PMID: 2962505010.1016/j.cell.2018.03.0356070353) ; Canisius, S., Martens, J. W. M. & Wessels, L. F. A. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol. 17, 261 (2016). (PMID: 2798608710.1186/s13059-016-1114-x5162102) ; Frankell, A. M., Colliver, E., Mcgranahan, N. & Swanton, C. cloneMap: a R package to visualise clonal heterogeneity. Preprint at bioRxiv https://doi.org/10.1101/2022.07.26.501523 (2022). ; Broad Institute TCGA Genome Data Analysis Center (2016): SNP6 Copy number analysis (GISTIC2) (Broad Institute of MIT and Harvard, 2016). ; Royston, P. & Parmar, M. K. B. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med. Res. Methodol. 13, 152 (2013). (PMID: 2431426410.1186/1471-2288-13-1523922847) ; Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014). (PMID: 2498246110.1200/JCO.2014.55.22084105489) ; Liang, F., Zhang, S., Wang, Q. & Li, W. Treatment effects measured by restricted mean survival time in trials of immune checkpoint inhibitors for cancer. Ann. Oncol. 29, 1320–1324 (2018). (PMID: 2978816710.1093/annonc/mdy075)
  • Grant Information: 25354 United Kingdom CRUK_ Cancer Research UK; CTRNBC-2022/100001 United Kingdom CRUK_ Cancer Research UK; 21999 United Kingdom CRUK_ Cancer Research UK; 24956 United Kingdom CRUK_ Cancer Research UK; United Kingdom WT_ Wellcome Trust; 17786 United Kingdom CRUK_ Cancer Research UK; CC2008 United Kingdom ARC_ Arthritis Research UK; MR/V033077/1 United Kingdom MRC_ Medical Research Council; CC2041 United Kingdom ARC_ Arthritis Research UK; 29569 United Kingdom CRUK_ Cancer Research UK; 30025 United Kingdom CRUK_ Cancer Research UK
  • Contributed Indexing: Investigator: J Le Quesne; P Van Loo; A Bajaj; A Nakas; A Sodha-Ramdeen; K Ang; M Tufail; MF Chowdhry; M Scotland; R Boyles; S Rathinam; C Wilson; D Marrone; S Dulloo; G Matharu; JA Shaw; J Riley; L Primrose; H Cheyne; M Khalil; S Richardson; T Cruickshank; K Gilbert; AJ Patel; A Osman; C Lacson; G Langman; H Shackleford; M Djearaman; S Kadiri; A Leek; JD Hodgkinson; N Totten; A Montero; E Smith; E Fontaine; F Granato; H Doran; J Novasio; K Rammohan; L Joseph; P Bishop; R Shah; S Moss; V Joshi; P Crosbie; F Gomes; K Brown; M Carter; A Chaturvedi; L Priest; P Oliveira; CR Lindsay; A Clipson; J Tugwood; A Kerr; DG Rothwell; E Kilgour; HJWL Aerts; TL Kaufmann; Z Szallasi; J Kisistok; M Sokac; M Diossy; J Demeulemeester; A Stewart; A Magness; A Rowan; A Karamani; B Chain; BB Campbell; C Castignani; CE Weeden; C Richard; DR Pearce; D Karagianni; D Levi; E Hoxha; E Larose Cadieux; E Nye; E Grönroos; F Gálvez-Cancino; F Athanasopoulou; F Gimeno-Valiente; G Kassiotis; G Stavrou; G Mastrokalos; H Zhai; HL Lowe; I Matos; J Goldman; JL Reading; JK Rane; JM Lam; JA Hartley; KSS Enfield; K Selvaraju; K Litchfield; KW Ng; K Chen; K Dijkstra; K Thakkar; L Ensell; M Shah; M Vasquez; M Litovchenko; M Werner Sunderland; M Leung; M Escudero; M Tanić; M Sivakumar; N Kanu; O Chervova; O Lucas; O Al-Sawaf; P Hobson; P Pawlik; RK Stone; RE Hynds; R Vendramin; S Saghafinia; S López; S Gamble; SKA Ung; S Vanloo; S Boeing; S Beck; SK Bola; T Denner; TP Mourikis; V Spanswick; V Barbè; WT Lu; W Hill; Y Wu; Y Naito; Z Ramsden; C Veiga; G Royle; CA Collins-Fekete; F Fraioli; P Ashford; T Clark; E Borg; J Wilson; AJ Procter; A Ahmed; MN Taylor; A Nair; D Patrini; E Martinoni Hoogenboom; F Monk; JW Holding; J Choudhary; K Bhakhri; M Scarci; M Hayward; N Panagiotopoulos; P Gorman; R Khiroya; RC Stephens; YNS Wong; S Bandula; A Sharp; S Smith; N Gower; HK Dhanda; K Chan; C Pilotti; R Leslie; A Grapa; H Zhang; K AbdulJabbar; X Pan; Y Yuan; D Chuter; M MacKenzie; S Chee; A Alzetani; L Scarlett; J Richards; P Ingram; S Austin; P De Sousa; S Jordan; A Rice; H Raubenheimer; H Bhayani; L Ambrose; A Devaraj; H Chavan; S Begum; SI Buderi; D Kaniu; M Malima; S Booth; N Fernandes; P Shah; C Proli; S Danson; L Robinson; C Dick; A Kirk; M Asif; R Bilancia; N Kostoulas; M Thomas
  • Molecular Sequence: ClinicalTrials.gov NCT01888601
  • Substance Nomenclature: EC 2.7.10.1 (ROS1 protein, human) ; EC 2.7.10.1 (RET protein, human) ; EC 2.7.10.1 (ALK protein, human) ; EC 2.7.10.1 (MET protein, human) ; EC 2.7.10.1 (EGFR protein, human)
  • Entry Date(s): Date Created: 20230412 Date Completed: 20230512 Latest Revision: 20240320
  • Update Code: 20240320
  • PubMed Central ID: PMC10115649

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -