Zum Hauptinhalt springen

Potential response of dark carbon fixation to global warming in estuarine and coastal waters.

Qi, L ; Zheng, Y ; et al.
In: Global change biology, Jg. 29 (2023-07-01), Heft 13, S. 3821-3832
Online academicJournal

Titel:
Potential response of dark carbon fixation to global warming in estuarine and coastal waters.
Autor/in / Beteiligte Person: Qi, L ; Zheng, Y ; Hou, L ; Liu, B ; Zhou, J ; An, Z ; Wu, L ; Chen, F ; Lin, Z ; Yin, G ; Dong, H ; Li, X ; Liang, X ; Liu, M
Link:
Zeitschrift: Global change biology, Jg. 29 (2023-07-01), Heft 13, S. 3821-3832
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2023
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.16702
Schlagwort:
  • Carbon Cycle
  • Seasons
  • Carbon metabolism
  • Global Warming
  • Ecosystem
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2023 Jul; Vol. 29 (13), pp. 3821-3832. <i>Date of Electronic Publication: </i>2023 Apr 12.
  • MeSH Terms: Global Warming* ; Ecosystem* ; Carbon Cycle ; Seasons ; Carbon / metabolism
  • References: Alfreider, A., Baumer, A., Bogensperger, T., Posch, T., Salcher, M. M., & Summerer, M. (2017). CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environmental Microbiology, 19(7), 2754-2768. https://doi.org/10.1111/1462-2920.13786. ; Alfreider, A., Grimus, V., Luger, M., Ekblad, A., Salcher, M. M., & Summerer, M. (2018). Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiology Ecology, 94(10), fiy163. https://doi.org/10.1093/femsec/fiy163. ; Alonso-Saez, L., Galand, P. E., Casamayor, E. O., Pedros-Alio, C., & Bertilsson, S. (2010). High bicarbonate assimilation in the dark by Arctic bacteria. ISME Journal, 4(12), 1581-1590. https://doi.org/10.1038/ismej.2010.69. ; Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D., & von Fischer, J. C. (2016). Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. Journal of Geophysical Research: Biogeosciences, 121(6), 1420-1433. https://doi.org/10.1002/2016JG003343. ; Alster, C. J., Weller, Z. D., & von Fischer, J. C. (2018). A meta-analysis of temperature sensitivity as a microbial trait. Global Change Biology, 24(9), 4211-4224. https://doi.org/10.1111/gcb.14342. ; Baltar, F., Lundin, D., Palovaara, J., Lekunberri, I., Reinthaler, T., Herndl, G. J., & Pinhassi, J. (2016). Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic. Frontiers in Microbiology, 7, 1670. https://doi.org/10.3389/fmicb.2016.01670. ; Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6), 2325-2342. https://doi.org/10.1093/jxb/err417. ; Belkin, I. M. (2009). Rapid warming of large marine ecosystems. Progress in Oceanography, 81(1), 207-213. https://doi.org/10.1016/j.pocean.2009.04.011. ; Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology, 77(6), 1925-1936. https://doi.org/10.1128/AEM.02473-10. ; Bräuer, S. L., Kranzler, K., Goodson, N., Murphy, D., Simon, H. M., Baptista, A. M., & Tebo, B. M. (2013). Dark carbon fixation in the Columbia River's estuarine turbidity maxima: Molecular characterization of red-type cbbL genes and measurement of DIC uptake rates in response to added electron donors. Estuaries and Coasts, 36(5), 1073-1083. https://doi.org/10.1007/s12237-013-9603-6. ; Brzostek, E. R., & Finzi, A. C. (2012). Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. Journal of Geophysical Research: Biogeosciences, 117(G1). https://doi.org/10.1029/2011JG001688. ; Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18(4), 366-368. https://doi.org/10.1038/s41592-021-01101-x. ; Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59-60. https://doi.org/10.1038/nmeth.3176. ; Callieri, C., Coci, M., Eckert, E. M., Salcher, M. M., & Bertoni, R. (2014). Archaea and Bacteria in deep lake hypolimnion: in situ dark inorganic carbon uptake. Journal of Limnology, 73(1), 47-54. https://doi.org/10.4081/jlimnol.2014.937. ; Camacho, A., Rochera, C., Silvestre, J. J., Vicente, E., & Hahn, M. W. (2005). Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: The role of differential ecological strategies. Microbial Ecology, 50(2), 172-184. https://doi.org/10.1007/s00248-004-0156-x. ; Cao, H., Hong, Y., Li, M., & Gu, J.-D. (2012). Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Applied Microbiology and Biotechnology, 94(1), 247-259. https://doi.org/10.1007/s00253-011-3636-1. ; Davidson, E. A., Janssens, I. A., & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12(2), 154-164. https://doi.org/10.1111/j.1365-2486.2005.01065.x. ; Figueroa, I. A., Barnum, T. P., Somasekhar, P. Y., Carlstrom, C. I., Engelbrektson, A. L., & Coates, J. D. (2018). Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proceedings of the National Academy of Sciences of the United States of America, 115(1), E92-E101. https://doi.org/10.1073/pnas.1715549114. ; Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565. ; Garcia-Cantizano, J., Casamayor, E. O., Gasol, J. M., Guerrero, R., & Pedros-Alio, C. (2005). Partitioning of CO2 incorporation among planktonic microbial guilds and estimation of in situ specific growth rates. Microbial Ecology, 50(2), 230-241. https://doi.org/10.1007/s00248-004-0144-9. ; Giese, M. (1994). Joint Global Ocean Flux Study (JGOFS). Environmental Science and Pollution Research, 1(3), 177. https://doi.org/10.1007/BF02986941. ; Groeneweg, J., Sellner, B., & Tappe, W. (1994). Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: Effects of pH and temperature. Water Research, 28(12), 2561-2566. https://doi.org/10.1016/0043-1354(94)90074-4. ; Guerrero-Feijoo, E., Sintes, E., Herndl, G. J., & Varela, M. M. (2018). High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environment Microbiology, 20(2), 602-611. https://doi.org/10.1111/1462-2920.13984. ; Hansman, R. L., Griffin, S., Watson, J. T., Druffel, E. R. M., Ingalls, A. E., Pearson, A., & Aluwihare, L. I. (2009). The radiocarbon signature of microorganisms in the mesopelagic ocean. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6513-6518. https://doi.org/10.1073/pnas.0810871106. ; Herndl, G. J., Reinthaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A., & Pernthaler, J. (2005). Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Applied and Environmental Microbiology, 71(5), 2303-2309. https://doi.org/10.1128/AEM.71.5.2303-2309.2005. ; Hügler, M., & Sievert, S. M. (2010). Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 3(1), 261-289. https://doi.org/10.1146/annurev-marine-120709-142712. ; IPCC. (2021). Summary for policymakers climate change 2021: The physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou, Eds.). Cambridge University Press. ; Jia, Z., Liu, T., Xia, X., & Xia, N. (2016). Effect of particle size and composition of suspended sediment on denitrification in river water. Science of the Total Environment, 541, 934-940. https://doi.org/10.1016/j.scitotenv.2015.10.012. ; Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296, 643-645. https://doi.org/10.1038/296643a0. ; Kyewalyanga, M. S., Naik, R., Hegde, S., Raman, M., Barlow, R., & Roberts, M. (2007). Phytoplankton biomass and primary production in Delagoa Bight Mozambique: Application of remote sensing. Estuarine, Coastal and Shelf Science, 74(3), 429-436. https://doi.org/10.1016/j.ecss.2007.04.027. ; Labrenz, M., Jost, G., Pohl, C., Beckmann, S., Martens-Habbena, W., & Jürgens, K. (2005). Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Applied and Environmental Microbiology, 71(11), 6664-6672. https://doi.org/10.1128/AEM.71.11.6664-6672.2005. ; Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. https://doi.org/10.1093/bioinformatics/btv033. ; Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. https://doi.org/10.1093/bioinformatics/btp336. ; Liu, B., Hou, L., Zheng, Y., Zhang, Z., Tang, X., Mao, T., Du, J., Bi, Q., Dong, H., Yin, G., Han, P., Liang, X., & Liu, M. (2022). Dark carbon fixation in intertidal sediments: Controlling factors and driving microorganisms. Water Research, 216, 118381. https://doi.org/10.1016/j.watres.2022.118381. ; Middelburg, J. J. (2011). Chemoautotrophy in the ocean. Geophysical Research Letters, 38(24). https://doi.org/10.1029/2011GL049725. ; Mitchell, S. B. (2013). Turbidity maxima in four macrotidal estuaries. Ocean & Coastal Management, 79, 62-69. https://doi.org/10.1016/j.ocecoaman.2012.05.030. ; Molari, M., Manini, E., & Dell'Anno, A. (2013). Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Global Biogeochemical Cycles, 27(1), 212-221. https://doi.org/10.1002/gbc.20030. ; Nakagawa, S., & Takai, K. (2008). Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiology Ecology, 65(1), 1-14. https://doi.org/10.1111/j.1574-6941.2008.00502.x. ; Noguchi, H., Park, J., & Takagi, T. (2006). MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Research, 34(19), 5623-5630. https://doi.org/10.1093/nar/gkl723. ; Overholt, W. A., Trumbore, S., Xu, X., Bornemann, T. L. V., Probst, A. J., Krüger, M., Herrmann, M., Thamdrup, B., Bristow, L. A., Taubert, M., Schwab, V. F., Hölzer, M., Marz, M., & Küsel, K. (2022). Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nature Geoscience, 15(7), 561-567. https://doi.org/10.1038/s41561-022-00968-5. ; Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R., Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G. J., & Stepanauskas, R. (2017). Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 358(6366), 1046-1051. https://doi.org/10.1126/science.aan8260. ; Qin, W., Amin, S. A., Martens-Habbena, W., Walker, C. B., Urakawa, H., Devol, A. H., Ingalls, A. E., Moffett, J. W., Armbrust, E. V., & Stahl, D. A. (2014). Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12504-12509. https://doi.org/10.1073/pnas.1324115111. ; Reinthaler, T., van Aken, H. M., & Herndl, G. J. (2010). Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep Sea Research Part II: Topical Studies in Oceanography, 57(16), 1572-1580. https://doi.org/10.1016/j.dsr2.2010.02.023. ; Ren, Y., Yu, G., Shi, C., Liu, L., Guo, Q., Han, C., Zhang, D., Zhang, L., Liu, B., Gao, H., Zeng, J., Zhou, Y., Qiu, Y., Wei, J., Luo, Y., Zhu, F., Li, X., Wu, Q., Li, B., … Huang, H. (2022). Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta, 1(2), e12. https://doi.org/10.1002/imt2.12. ; Saxena, H., Sahoo, D., Nazirahmed, S., Rai, D. K., Khan, M. A., Sharma, N., Kumar, S., & Singh, A. (2022). Contribution of carbon fixation toward carbon sink in the ocean twilight zone. Geophysical Research Letters, 49(18), e2022GL099044. https://doi.org/10.1029/2022GL099044. ; Scanes, E., Scanes, P. R., & Ross, P. M. (2020). Climate change rapidly warms and acidifies Australian estuaries. Nature Communications, 11(1), 1803. https://doi.org/10.1038/s41467-020-15550-z. ; Scranton, M. I., Taylor, G. T., Thunell, R. C., Muller-Karger, F. E., Astor, Y., Swart, P., Edgcomb, V. P., & Pachiadaki, M. G. (2020). Anomalous δ13C in particulate organic carbon at the chemoautotrophy maximum in the Cariaco Basin. Journal of Geophysical Research: Biogeosciences, 125(2), e2019JG005276. https://doi.org/10.1029/2019JG005276. ; Shen, Z., Zhou, S., & Pei, S. (2008). Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary. Estuarine, Coastal and Shelf Science, 78(3), 481-492. https://doi.org/10.1016/j.ecss.2008.01.010. ; Signori, C. N., Valentin, J. L., Pollery, R. C. G., & Enrich-Prast, A. (2017). Temporal variability of dark carbon fixation and bacterial production and their relation with environmental factors in a tropical estuarine system. Estuaries and Coasts, 41(4), 1089-1101. https://doi.org/10.1007/s12237-017-0338-7. ; Somero, G. N. (2004). Adaptation of enzymes to temperature: searching for basic “strategies”. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(3), 321-333. https://doi.org/10.1016/j.cbpc.2004.05.003. ; Sun, Z., Chong, L., Meng, X., Hu, C., Zheng, J., & Gao, J. (2022). Multivariate relations of river habitat to water-sediment indexes in the Yangtze Estuary. Catena, 216, 106416. https://doi.org/10.1016/j.catena.2022.106416. ; Takai, K., Campbell, B. J., Cary, S. C., Suzuki, M., Oida, H., Nunoura, T., Hirayama, H., Nakagawa, S., Suzuki, Y., Inagaki, F., & Horikoshi, K. (2005). Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Applied and Environmental Microbiology, 71(11), 7310-7320. https://doi.org/10.1128/AEM.71.11.7310-7320. ; Tetu, S. G., Breakwell, K., Elbourne, L. D. H., Holmes, A. J., Gillings, M. R., & Paulsen, I. T. (2013). Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME Journal, 7(6), 1227-1236. https://doi.org/10.1038/ismej.2013.14. ; Walker, C. B., de la Torre, J. R., Klotz, M. G., Urakawa, H., Pinel, N., Arp, D. J., Brochier-Armanet, C., Chain, P. S. G., Chan, P. P., Gollabgir, A., Hemp, J., Hügler, M., Karr, E. A., Könneke, M., Shin, M., Lawton, T. J., Lowe, T., Martens-Habbena, W., Sayavedra-Soto, L. A., … Stahl, D. A. (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8818-8823. https://doi.org/10.1073/pnas.0913533107. ; Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W., Woebken, D., Janssens, I. A., Sigurdsson, B. D., & Richter, A. (2018). Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change, 8(10), 885-889. https://doi.org/10.1038/s41558-018-0259-x. ; Wang, J., Wang, J., Xu, J., Yang, Y., Lyv, Y., & Luan, K. (2021). Seasonal and interannual variations of sea surface temperature and influencing factors in the Yangtze River Estuary. Regional Studies in Marine Science, 45, 101827. https://doi.org/10.1016/j.rsma.2021.101827. ; Yakimov, M. M., Cono, V. L., Smedile, F., DeLuca, T. H., Juárez, S., Ciordia, S., Fernández, M., Albar, J. P., Ferrer, M., Golyshin, P. N., & Giuliano, L. (2011). Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME Journal, 5(6), 945-961. https://doi.org/10.1038/ismej.2010.197. ; Zheng, Y., Hou, L., Zhang, Z., Ge, J., Li, M., Yin, G., Han, P., Dong, H., Liang, X., Gao, J., Gao, D., & Liu, M. (2021). Overlooked contribution of water column to nitrogen removal in estuarine turbidity maximum zone (TMZ). Science of the Total Environment, 788, 147736. https://doi.org/10.1016/j.scitotenv.2021.147736. ; Zheng, Y., Jiang, X., Hou, L., Liu, M., Lin, X., Gao, J., Li, X., Yin, G., Yu, C., & Wang, R. (2016). Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. Journal of Geophysical Research: Biogeosciences, 121(6), 1632-1645. https://doi.org/10.1002/2015JG003300. ; Zheng, Z., Zheng, L., Xu, M. N., Tan, E., Hutchins, D. A., Deng, W., Zhang, Y., Shi, D., Dai, M., & Kao, S.-J. (2020). Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming. Nature Communications, 11(1), 3511. https://doi.org/10.1038/s41467-020-17366-3. ; Zhou, W., Liao, J., Guo, Y., Yuan, X., Huang, H., Yuan, T., & Liu, S. (2017). High dark carbon fixation in the tropical South China Sea. Continental Shelf Research, 146, 82-88. https://doi.org/10.1016/j.csr.2017.08.005.
  • Grant Information: 2016YFA0600904 Chinese National Key Programs for Fundamental Research and Development; KLGIS2022C03 Director's Fund of Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University; 41725002 National Natural Science Foundation of China; 41730646 National Natural Science Foundation of China; 41971105 National Natural Science Foundation of China; 42030411 National Natural Science Foundation of China; 42222605 National Natural Science Foundation of China; 42230505 National Natural Science Foundation of China
  • Contributed Indexing: Keywords: benthic water; chemoautotrophy; coast; dark carbon fixation; estuary; global warming; temperature response
  • Substance Nomenclature: 7440-44-0 (Carbon)
  • Entry Date(s): Date Created: 20230406 Date Completed: 20230607 Latest Revision: 20230831
  • Update Code: 20240514

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -