Zum Hauptinhalt springen

Impact of MiraNet® long-lasting insecticidal net against Anopheles arabiensis wild population of Northern Tanzania.

Kweka, EJ ; Lyaruu, LJ ; et al.
In: Parasitology research, Jg. 122 (2023-05-01), Heft 5, S. 1245-1253
Online academicJournal

Titel:
Impact of MiraNet® long-lasting insecticidal net against Anopheles arabiensis wild population of Northern Tanzania.
Autor/in / Beteiligte Person: Kweka, EJ ; Lyaruu, LJ ; Temba, V ; Msangi, S ; Ouma, JO ; Karanja, W ; Mahande, AM ; Himeidan, YE
Link:
Zeitschrift: Parasitology research, Jg. 122 (2023-05-01), Heft 5, S. 1245-1253
Veröffentlichung: Berlin : Springer International, c1987-, 2023
Medientyp: academicJournal
ISSN: 1432-1955 (electronic)
DOI: 10.1007/s00436-023-07827-1
Schlagwort:
  • Animals
  • Tanzania
  • Insecticide Resistance
  • Mosquito Control methods
  • Mosquito Vectors
  • Insecticides pharmacology
  • Anopheles genetics
  • Insecticide-Treated Bednets
  • Pyrethrins pharmacology
  • Malaria prevention & control
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Parasitol Res] 2023 May; Vol. 122 (5), pp. 1245-1253. <i>Date of Electronic Publication: </i>2023 Mar 23.
  • MeSH Terms: Insecticides* / pharmacology ; Anopheles* / genetics ; Insecticide-Treated Bednets* ; Pyrethrins* / pharmacology ; Malaria* / prevention & control ; Animals ; Tanzania ; Insecticide Resistance ; Mosquito Control / methods ; Mosquito Vectors
  • References: Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci 113(33):9268–9273. https://doi.org/10.1073/pnas.1608295113. (PMID: 10.1073/pnas.1608295113274398664995928) ; Briët OJ, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, Dabiré RK, Etang J, Koudou BG, Tungu PK, Chitnis N (2013) Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malar J 12(1):77. https://doi.org/10.1186/1475-2875-12-77. (PMID: 10.1186/1475-2875-12-77234425753598792) ; Chang X, Zhong D, Lo E, Fang Q, Bonizzoni M, Wang X, Lee M-C, Zhou G, Zhu G, Qin Q, Chen X, Cui L, Yan G (2016) Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasites & Vectors 9(1):228. https://doi.org/10.1186/s13071-016-1513-6. (PMID: 10.1186/s13071-016-1513-6) ; Ibrahim SS, Ndula M, Riveron JM, Irving H, Wondji CS (2016) The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation. Mol Ecol 25(14):3436–3452. https://doi.org/10.1111/mec.13673. (PMID: 10.1111/mec.13673271358864950264) ; Ijumba JN, Mosha FW, Lindsay SW (2002) Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol 16(1):28–38. https://doi.org/10.1046/j.0269-283x.2002.00337.x. (PMID: 10.1046/j.0269-283x.2002.00337.x11963979) ; Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, Wondji CS (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Sci Rep 6:24707. https://doi.org/10.1038/srep24707. (PMID: 10.1038/srep24707270947784837359) ; Gillies MT, Coetzee M (1987) A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res 55:1–143. ; Kulkarni M, Rowland M, Alifrangis M, Mosha F, Matowo J, Malima R, Peter J, Kweka E, Lyimo I, Magesa S, Salanti A, Rau M, Drakeley C (2006a) Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malar J 5(1):56. (PMID: 10.1186/1475-2875-5-56168200671526444) ; Kulkarni MA, Kweka E, Nyale E, Lyatuu E, Mosha FW, Chandramohan D, Rau ME, Drakeley C (2006b) Entomological evaluation of malaria vectors at different altitudes in Hai district, northeastern Tanzania. J Med Entomol 43(3):580–588. (PMID: 10.1093/jmedent/43.3.58016739419) ; Kweka E, Mosha F, Lowassa A, Mahande A, Kitau J, Matowo J, Mahande M, Massenga C, Tenu F, Feston E, Lyatuu E, Mboya M, Mndeme R, Chuwa G, Temu E (2008) Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J 7(1):152. (PMID: 10.1186/1475-2875-7-152186871192519077) ; Kweka EJ, Lyaruu LJ, Mahande AM (2017) Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania. Infect Dis Poverty 6(1):11. https://doi.org/10.1186/s40249-016-0220-z. (PMID: 10.1186/s40249-016-0220-z280958975242039) ; Kweka EJ, Mazigo HD, Lyaruu LJ, Mausa EA, Venter N, Mahande AM, Coetzee M (2020) Anopheline mosquito species composition, kdr mutation frequency, and parasite infectivity status in northern Tanzania. J Med Entomol 57(3):933–938. (PMID: 10.1093/jme/tjz24531923308) ; Mahande A, Mosha F, Mahande J, Kweka E (2007) Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J 6(1):100. (PMID: 10.1186/1475-2875-6-100176637871964787) ; Mahande AM, Dusfour I, Matias JR, Kweka EJ (2012) Knockdown resistance, rdl alleles, and the annual entomological inoculation rate of wild mosquito populations from lower Moshi, Northern Tanzania. J Glob Infect Dis 4(2):114. (PMID: 10.4103/0974-777X.96776227542473385201) ; Matowo J, Kulkarni M, Mosha F, Oxborough R, Kitau J, Tenu F, Rowland M (2010a) Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar J 9(1):193. (PMID: 10.1186/1475-2875-9-193206092203224900) ; Matowo J, Jones CM, Kabula B, Ranson H, Steen K, Mosha F, Rowland M, Weetman D (2014) Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasites & Vectors 7(1):274. https://doi.org/10.1186/1756-3305-7-274. (PMID: 10.1186/1756-3305-7-274) ; Matowo J, Kitau J, Kaaya R, Kavishe R, Wright A, Kisinza W, Kleinschmidt I, Mosha F, Rowland M, Protopopoff N (2015) Trends in the selection of insecticide resistance in Anopheles gambiae s.l. mosquitoes in northwest Tanzania during a community randomized trial of longlasting insecticidal nets and indoor residual spraying. Med Vet Entomol 29(1):51–59. https://doi.org/10.1111/mve.12090. (PMID: 10.1111/mve.1209025537754) ; Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M, Kweka EJ (2017) The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar J 16(1):364. https://doi.org/10.1186/s12936-017-2022-6. (PMID: 10.1186/s12936-017-2022-6288932405594483) ; Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, Magesa SM, Derua YA, Rwegoshora RT, Michael E, Simonsen PE (2011) Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar J 10(1):188. https://doi.org/10.1186/1475-2875-10-188. (PMID: 10.1186/1475-2875-10-188217522733160426) ; N’Guessan R, Corbel V, Akogbéto M, Rowland M (2007) Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area Benin. Emerg Infect Dis 13(2):199. (PMID: 10.3201/eid1302.060631174798802725864) ; Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David J-P (2014) Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasites & Vectors 7(1):480. https://doi.org/10.1186/s13071-014-0480-z. (PMID: 10.1186/s13071-014-0480-z) ; Nnko EJ, Kihamia C, Tenu F, Premji Z, Kweka EJ (2017a) Insecticide use pattern and phenotypic susceptibility of Anopheles gambiae sensu lato to commonly used insecticides in Lower Moshi, northern Tanzania. BMC Res Notes 10(1):443. https://doi.org/10.1186/s13104-017-2793-4. (PMID: 10.1186/s13104-017-2793-4288777335585946) ; Olé Sangba ML, Deketramete T, Wango SP, Kazanji M, Akogbeto M, Ndiath MO (2016) Insecticide resistance status of the Anopheles funestus population in Central African Republic: a challenge in the war. Parasites & Vectors 9(1):230. https://doi.org/10.1186/s13071-016-1510-9. (PMID: 10.1186/s13071-016-1510-9) ; Olé Sangba ML, Sidick A, Govoetchan R, Dide-Agossou C, Ossè RA, Akogbeto M, Ndiath MO (2017) Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui Central African Republic. Parasites & Vectors 10(1):23. https://doi.org/10.1186/s13071-016-1965-8. (PMID: 10.1186/s13071-016-1965-8) ; Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kisinza W, Mosha FW, Rowland M (2013) High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 12(1):149. https://doi.org/10.1186/1475-2875-12-149. (PMID: 10.1186/1475-2875-12-149236387573655935) ; Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends in Parasitol 27(2):91–98. (PMID: 10.1016/j.pt.2010.08.004) ; Scott JG (2016) Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag Sci:n/a-n/a. https://doi.org/10.1002/ps.4328. ; Scott JA, Brogdon WG, Collins FH.(1993). Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49(4):520–9. https://doi.org/10.4269/ajtmh.1993.49.520 . ; Smith A (1964) A review of the origin and development of experimental hut techniques used in the study of insecticides in east Africa. East Afr Med J 41:361–374. (PMID: 14202648) ; Toé KH, Jones CM, N’Fale S, Ismail H, Dabiré RK, Ranson H (2014) Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness Burkina Faso. Emerg Infect Dis 20(10):1691–1696. (PMID: 10.3201/eid2010.140619252799654193182) ; Van Bortel W, Chinh VD, Berkvens D, Speybroeck N, Trung HD, M. C (2009a) Impact of insecticide-treated nets on wild pyrethroid resistant Anopheles epiroticus population from southern Vietnam tested in experimental huts. Malar J 8:248. ; WHO (2013b) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. WHO, Geneva. ; WHO (2017) World malaria report 2017 Geneva: WHO Embargoed until, vol 13. WHO, Geneva. ; WHO (2011) Report of the 14th WHOPES Working Group meeting. Review of Spinodad® EC, LifeNet LN, DuraNet LN, Royal Sentry LN, Yahe LN WHO/HTM/NTD/WHOPES/20117. WHO, Geneva. ; WHO (2013a) Guidelines for laboratory and field-testing of long-lasting insecticidal nets. World Health Organization. ; WHO (2014) WHO recommended long-lasting insecticidal nets. [ http://www.who.int/whopes/Long_lasting_insecticidal_nets_06_Feb_2014.pdf?ua=1 ]. WHO. 20-2-2015. ; WHO (2022) World malaria report 2021. 2021 Reference Source. World Health Organisation, Geneva.
  • Contributed Indexing: Keywords: Anopheles arabiensis; Deterrence; DuraNet; Exophily; Experimental huts; MiraNet; Mortality; Resistance
  • Substance Nomenclature: 0 (Insecticides) ; 0 (Pyrethrins)
  • Entry Date(s): Date Created: 20230323 Date Completed: 20230414 Latest Revision: 20230414
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -