Zum Hauptinhalt springen

Continent-wide declines in shallow reef life over a decade of ocean warming.

Edgar, GJ ; Stuart-Smith, RD ; et al.
In: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 858-865
Online academicJournal

Titel:
Continent-wide declines in shallow reef life over a decade of ocean warming.
Autor/in / Beteiligte Person: Edgar, GJ ; Stuart-Smith, RD ; Heather, FJ ; Barrett, NS ; Turak, E ; Sweatman, H ; Emslie, MJ ; Brock, DJ ; Hicks, J ; French, B ; Baker, SC ; Howe, SA ; Jordan, A ; Knott, NA ; Mooney, P ; Cooper, AT ; Oh, ES ; Soler, GA ; Mellin, C ; Ling, SD ; Dunic, JC ; Turnbull, JW ; Day, PB ; Larkin, MF ; Seroussi, Y ; Stuart-Smith, J ; Clausius, E ; Davis, TR ; Shields, J ; Shields, D ; Johnson, OJ ; Fuchs, YH ; Denis-Roy, L ; Jones, T ; Bates, AE
Link:
Zeitschrift: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 858-865
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-05833-y
Schlagwort:
  • Animals
  • Australia
  • Population Dynamics
  • Population Density
  • Extinction, Biological
  • Conservation of Natural Resources trends
  • Echinodermata classification
  • Anthozoa
  • Coral Reefs
  • Fishes classification
  • Invertebrates classification
  • Oceans and Seas
  • Global Warming statistics & numerical data
  • Seaweed classification
  • Extreme Heat
  • Seawater analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2023 Mar; Vol. 615 (7954), pp. 858-865. <i>Date of Electronic Publication: </i>2023 Mar 22.
  • MeSH Terms: Anthozoa* ; Coral Reefs* ; Fishes* / classification ; Invertebrates* / classification ; Oceans and Seas* ; Global Warming* / statistics & numerical data ; Seaweed* / classification ; Extreme Heat* ; Seawater* / analysis ; Animals ; Australia ; Population Dynamics ; Population Density ; Extinction, Biological ; Conservation of Natural Resources / trends ; Echinodermata / classification
  • References: Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015). (PMID: 2618874410.1016/S0140-6736(15)60901-1) ; Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). (PMID: 2267828010.1038/nature11148) ; Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017). (PMID: 28696295554431110.1073/pnas.1704949114) ; Duffy, J. E. et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front. Mar. Sci. 6, https://doi.org/10.3389/fmars.2019.00317 (2019). ; Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016). (PMID: 2738795110.1126/science.aad8745) ; Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501 (2017). (PMID: 2915545310.1002/ecy.2092) ; Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019). (PMID: 3085859410.1038/s41559-019-0826-1) ; Day, J. The need and practice of monitoring, evaluating and adapting marine planning and management—lessons from the Great Barrier Reef. Mar. Policy 32, 823–831 (2008). (PMID: 10.1016/j.marpol.2008.03.023) ; Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Phil. Trans. R. Soc. B 360, 289–295 (2005). (PMID: 15814346156944810.1098/rstb.2004.1584) ; Vogel, G. Where have all the insects gone? Science 356, 576–579 (2017). (PMID: 2849571210.1126/science.356.6338.576) ; Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 222, 189–197 (2018). (PMID: 10.1016/j.biocon.2018.04.008) ; Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014). (PMID: 2506120210.1126/science.1251817) ; Regan, E. C. et al. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8, 397–403 (2015). (PMID: 10.1111/conl.12162) ; Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021). (PMID: 10.1111/gcb.15539) ; Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018). (PMID: 10.1016/j.marpol.2018.04.023) ; Species Survival Commission. 2006 IUCN Red List of Threatened Species (IUCN, 2006). ; Living Planet Report 2020—Bending The Curve of Biodiversity Loss (World Wildlife Fund, 2020). ; Edgar, G. J., Ward, T. J. & Stuart-Smith, R. D. Rapid declines across Australian fishery stocks indicate global sustainability targets will not be achieved without expanded network of ‘no-fishing’ reserves. Aquat. Conserv. 28, 1337–1350 (2018). (PMID: 10.1002/aqc.2934) ; Pitois, S. G., Lynam, C. P., Jansen, T., Halliday, N. & Edwards, M. Bottom-up effects of climate on fish populations: data from the continuous plankton recorder. Mar. Ecol. Progr. Ser. 456, 169–186 (2012). (PMID: 10.3354/meps09710) ; Stuart-Smith, R. D. et al. Assessing national biodiversity trends for rocky and coral reefs through the integration of citizen science and scientific monitoring programs. BioScience 67, 134–146 (2017). (PMID: 28596615538430210.1093/biosci/biw180) ; Knowlton, N. et al. in Life in the World’s Oceans: Diversity, Distribution and Abundance (ed. McIntyre, A. D.) 65–77 (Wiley–Blackwell, 2010). ; Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014). (PMID: 25977765432256910.1038/sdata.2014.7) ; Edgar, G. J. & Barrett, N. S. An assessment of population responses of common inshore fishes and invertebrates following declaration of five Australian marine protected areas. Environ. Conserv. 39, 271–281 (2012). (PMID: 10.1017/S0376892912000185) ; Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020). (PMID: 10.1016/j.biocon.2020.108854) ; Edgar, G. J. et al. Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. Biol. Conserv. 252, 108855 (2020). (PMID: 10.1016/j.biocon.2020.108855) ; Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017). (PMID: 2830011310.1038/nature21707) ; Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018). (PMID: 3004610810.1038/s41586-018-0359-9) ; Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. 31, 5393–5399.e5393 (2021). (PMID: 3473982110.1016/j.cub.2021.10.046) ; Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011). (PMID: 10.1016/j.jembe.2011.02.032) ; IUCN Standards and Petitions Working Group. Guidelines for Using the IUCN Red List Categories and Criteria, Version 7.0. http://intranet.iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf (2008). ; Fraser, K. M., Stuart-Smith, R. D., Ling, S. D. & Edgar, G. J. High biomass and productivity of epifaunal invertebrates living amongst dead coral. Mar. Biol. 168, 102 (2021). (PMID: 10.1007/s00227-021-03911-1) ; Gilmour, J. P. et al. The state of Western Australia’s coral reefs. Coral Reefs 38, 651–667 (2019). (PMID: 10.1007/s00338-019-01795-8) ; Long-Term Monitoring Program Annual Summary Report of Coral Reef Condition 2020/2021 (Australian Institute of Marine Science, 2021). ; Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010). (PMID: 21125021298159910.1371/journal.pone.0013969) ; Edgar, G. J., Ward, T. J. & Stuart-Smith, R. D. Weaknesses in stock assessment modelling and management practices affect fisheries sustainability. Aquat. Conserv. 29, 2010–2016 (2019). (PMID: 10.1002/aqc.3161) ; Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010). (PMID: 20176941297297810.1073/pnas.0908012107) ; Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009). (PMID: 20018706279331410.1073/pnas.0907529106) ; Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017). (PMID: 2906212510.1038/s41559-017-0353-x) ; Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021). (PMID: 33876750805401610.1073/pnas.2015094118) ; Bennett, S. et al. The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshwater Res. 67, 47–56 (2016). (PMID: 10.1071/MF15232) ; Stuart-Smith, R. D. et al. Loss of native rocky reef biodiversity in Australian metropolitan embayments. Mar. Pollut. Bull. 95, 324–332 (2015). (PMID: 2588222910.1016/j.marpolbul.2015.03.023) ; Ling, S. D. et al. Pollution signature for temperate reef biodiversity is short and simple. Mar. Pollut. Bull. 130, 159–169 (2018). (PMID: 2986654210.1016/j.marpolbul.2018.02.053) ; Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017). (PMID: 28851885557492210.1038/s41598-017-08758-5) ; Grech, A., Edgar, G. J., Fairweather, P., Pressey, R. L. & Ward, T. J. in Austral Ark (eds Stow, A., Maclean, N. & Holwell, G. I.) 582–599 (Cambridge Univ. Press, 2014). ; Bates, A. E., Stuart-Smith, R. D., Barrett, N. S. & Edgar, G. J. Biological interactions both facilitate and resist climate-related functional change in temperate reef communities. Proc. R. Soc. B 284, 20170484 (2017). (PMID: 28592671547407310.1098/rspb.2017.0484) ; Verges, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019). (PMID: 10.1111/1365-2435.13310) ; Popova, E. et al. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob. Change Biol. 22, 2038–2053 (2016). (PMID: 10.1111/gcb.13247) ; Edgar, G., Jones, G., Kaly, U., Hammond, L. & Wilson, B. Endangered Species: Threats and Threatening Processes in the Marine Environment. Issues Paper (Australian Marine Science Association, 1991). ; Edgar, G. J. et al. El Niño, fisheries and animal grazers interact to magnify extinction risk for marine species in Galapagos. Glob. Change Biol. 16, 2876–2890 (2010). (PMID: 10.1111/j.1365-2486.2009.02117.x) ; Koslow, J. A., Miller, E. F. & McGowan, J. A. Dramatic declines in coastal and oceanic fish communities off California. Mar. Ecol. Progr. Ser. 538, 221–227 (2015). (PMID: 10.3354/meps11444) ; Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019). (PMID: 10.1038/s41558-019-0631-5) ; Hamilton, S. L. et al. Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific. Proc. R. Soc. B 288, 20211195 (2021). (PMID: 34428964838533710.1098/rspb.2021.1195) ; Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011). (PMID: 10.1016/j.apgeog.2010.10.009) ; Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–951 (2008). (PMID: 1827688910.1126/science.1149345) ; Edgar, G. J. et al. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. Sci. Adv. 3, e1700419 (2017). (PMID: 29057321564713110.1126/sciadv.1700419) ; Krumhansl, K. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl Acad. Sci USA 113, 13785–13790 (2016). (PMID: 27849580513777210.1073/pnas.1606102113) ; R Core Team. R: A language and environment for statistical computing., (R Foundation for Statistical Computing, 2021). ; Stuart-Smith, R. D., Barrett, N. S., Stevenson, D. G. & Edgar, G. J. Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Glob. Change Biol. 16, 122–134 (2010). (PMID: 10.1111/j.1365-2486.2009.01955.x) ; James, L. C., Marzloff, M. P., Barrett, N., Friedman, A. & Johnson, C. R. Changes in deep reef benthic community composition across a latitudinal and environmental gradient in temperate Eastern Australia. Mar. Ecol. Progr. Ser. 565, 35–52 (2017). (PMID: 10.3354/meps11989) ; Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009). (PMID: 1904065410.1111/j.1523-1739.2008.01117.x) ; Skirving, W. et al. CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sens. 12, 3856 (2020). (PMID: 10.3390/rs12233856) ; Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–281 (2012). (PMID: 10.1111/j.1466-8238.2011.00656.x) ; Edgar, G. J. Australian Marine Life: The Plants and Animals of Temperate Waters 2nd edn (Reed New Holland, 2008). ; Edgar, G. J. Tropical Marine Life of Australia: Plants and Animals of the Central Pacific (New Holland, 2019). ; Froese, R. & Pauly, D. FishBase 2000: Concepts, Designs and Data Sources (ICLARM, 2000). ; Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models (version 3.1-155). http://CRAN.R-project.org/package=nlme (2015). ; R Core Team. R: A Language and Environment for Statistical Computing (version 4.2.0). http://www.R-project.org/ (R Foundation for Statistical Computing, 2013). ; Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: Extra map databases. R package version 2.3.0 (2018).
  • Entry Date(s): Date Created: 20230323 Date Completed: 20230406 Latest Revision: 20231213
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -