Zum Hauptinhalt springen

Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

Calvert, C ; Brockway, MM ; et al.
In: Nature human behaviour, Jg. 7 (2023-04-01), Heft 4, S. 529
Online academicJournal

Titel:
Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.
Autor/in / Beteiligte Person: Calvert, C ; Brockway, MM ; Zoega, H ; Miller, JE ; Been, JV ; Amegah, AK ; Racine-Poon, A ; Oskoui, SE ; Abok, II ; Aghaeepour, N ; Akwaowo, CD ; Alshaikh, BN ; Ayede, AI ; Bacchini, F ; Barekatain, B ; Barnes, R ; Bebak, K ; Berard, A ; Bhutta, ZA ; Brook, JR ; Bryan, LR ; Cajachagua-Torres, KN ; Campbell-Yeo, M ; Chu, DT ; Connor, KL ; Cornette, L ; Cortés, S ; Daly, M ; Debauche, C ; Dedeke, IOF ; Einarsdóttir, K ; Engjom, H ; Estrada-Gutierrez, G ; Fantasia, I ; Fiorentino, NM ; Franklin, M ; Fraser, A ; Gachuno, OW ; Gallo, LA ; Gissler, M ; Håberg, SE ; Habibelahi, A ; Häggström, J ; Hookham, L ; Hui, L ; Huicho, L ; Hunter, KJ ; Huq, S ; Kc, A ; Kadambari, S ; Kelishadi, R ; Khalili, N ; Kippen, J ; Le Doare, K ; Llorca, J ; Magee, LA ; Magnus, MC ; Man, KKC ; Mburugu, PM ; Mediratta, RP ; Morris, AD ; Muhajarine, N ; Mulholland, RH ; Bonnard, LN ; Nakibuuka, V ; Nassar, N ; Nyadanu, SD ; Oakley, L ; Oladokun, A ; Olayemi, OO ; Olutekunbi, OA ; Oluwafemi, RO ; Ogunkunle, TO ; Orton, C ; Örtqvist, AK ; Ouma, J ; Oyapero, O ; Palmer, KR ; Pedersen, LH ; Pereira, G ; Pereyra, I ; Philip, RK ; Pruski, D ; Przybylski, M ; Quezada-Pinedo, HG ; Regan, AK ; Rhoda, NR ; Rihs, TA ; Riley, T ; Rocha, TAH ; Rolnik, DL ; Saner, C ; Schneuer, FJ ; Souter, VL ; Stephansson, O ; Sun, S ; Swift, EM ; Szabó, M ; Temmerman, M ; Tooke, L ; Urquia, ML ; von Dadelszen P ; Wellenius, GA ; Whitehead, C ; Wong, ICK ; Wood, R ; Wróblewska-Seniuk, K ; Yeboah-Antwi, K ; Yilgwan, CS ; Zawiejska, A ; Sheikh, A ; Rodriguez, N ; Burgner, D ; Stock, SJ ; Azad, MB
Link:
Zeitschrift: Nature human behaviour, Jg. 7 (2023-04-01), Heft 4, S. 529
Veröffentlichung: [London] : Springer Nature Publishing, [2017]-, 2023
Medientyp: academicJournal
ISSN: 2397-3374 (electronic)
DOI: 10.1038/s41562-023-01522-y
Schlagwort:
  • Female
  • Humans
  • Infant
  • Infant, Newborn
  • Pregnancy
  • Communicable Disease Control
  • Pandemics prevention & control
  • COVID-19 epidemiology
  • COVID-19 prevention & control
  • Premature Birth epidemiology
  • Stillbirth epidemiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Hum Behav] 2023 Apr; Vol. 7 (4), pp. 529-544. <i>Date of Electronic Publication: </i>2023 Feb 27.
  • MeSH Terms: COVID-19* / epidemiology ; COVID-19* / prevention & control ; Premature Birth* / epidemiology ; Stillbirth* / epidemiology ; Female ; Humans ; Infant ; Infant, Newborn ; Pregnancy ; Communicable Disease Control ; Pandemics / prevention & control
  • References: Chawanpaiboon, S. et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health 7, e37–e46 (2019). (PMID: 3038945110.1016/S2214-109X(18)30451-0) ; Vogel, J. P. et al. The global epidemiology of preterm birth. Best. Pract. Res. Clin. Obstet. Gynaecol. 52, 3–12 (2018). (PMID: 2977986310.1016/j.bpobgyn.2018.04.003) ; Blencowe, H. et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob. Health 4, e98–e108 (2016). (PMID: 2679560210.1016/S2214-109X(15)00275-2) ; Hug, L. et al. Global, regional, and national estimates and trends in stillbirths from 2000 to 2019: a systematic assessment. Lancet 398, 772–785 (2021). (PMID: 34454675841735210.1016/S0140-6736(21)01112-0) ; Matheson, A. et al. Prematurity rates during the coronavirus disease 2019 (COVID-19) pandemic lockdown in Melbourne, Australia. Obstet. Gynecol. 137, 405–407 (2021). (PMID: 33543904788408210.1097/AOG.0000000000004236) ; Gallo, L. A. et al. A decline in planned, but not spontaneous, preterm birth rates in a large Australian tertiary maternity centre during COVID-19 mitigation measures. Aust. N. Z. J. Obstet. Gynaecol. https://doi.org/10.1111/ajo.13406 (2021). (PMID: 10.1111/ajo.13406342542868441865) ; Justman, N. et al. Lockdown with a price: the impact of the COVID-19 pandemic on prenatal care and perinatal outcomes in a tertiary care center. Isr. Med. Assoc. J. 22, 533–537 (2020). (PMID: 33236549) ; Hedermann, G. et al. Danish premature birth rates during the COVID-19 lockdown. Arch. Dis. Child. Fetal Neonatal Ed. 106, 93–95 (2020). (PMID: 3278839110.1136/archdischild-2020-319990) ; McDonnell, S., McNamee, E., Lindow, S. W. & O’Connell, M. P. The impact of the Covid-19 pandemic on maternity services: a review of maternal and neonatal outcomes before, during and after the pandemic. Eur. J. Obstet. Gynecol. Reprod. Biol. 255, 172–176 (2020). (PMID: 33142263755006610.1016/j.ejogrb.2020.10.023) ; Been, J. V. et al. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi-experimental study. Lancet Public Health 5, e604–e611 (2020). (PMID: 33065022755386710.1016/S2468-2667(20)30223-1) ; Philip, R. K. et al. Unprecedented reduction in births of very low birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-19 lockdown in Ireland: a ‘natural experiment’ allowing analysis of data from the prior two decades. BMJ Glob. Health 5, e003075 (2020). (PMID: 32999054752837110.1136/bmjgh-2020-003075) ; De Curtis, M., Villani, L. & Polo, A. Increase of stillbirth and decrease of late preterm infants during the COVID-19 pandemic lockdown. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2020-320682 (2020). ; Einarsdóttir, K., Swift, E. M. & Zoega, H. Changes in obstetric interventions and preterm birth during COVID-19: a nationwide study from Iceland. Acta Obstet. Gynecol. Scand. 100, 1924–1930 (2021). (PMID: 3425586010.1111/aogs.14231) ; Kc, A. et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob. Health 8, e1273–e1281 (2020). (PMID: 32791117741716410.1016/S2214-109X(20)30345-4) ; Briozzo, L., Tomasso, G., Viroga, S., Nozar, F. & Bianchi, A. Impact of mitigation measures against the COVID 19 pandemic on the perinatal results of the reference maternity hospital in Uruguay. J. Matern. Fetal. Neonatal Med. 35, 5060–5062 (2021). ; Main, E. K. et al. Singleton preterm birth rates for racial and ethnic groups during the coronavirus disease 2019 pandemic in California. Am. J. Obstet. Gynecol. 224, 239–241 (2020). (PMID: 33203528758203910.1016/j.ajog.2020.10.033) ; Wood, R. et al. Preterm birth during the coronavirus disease 2019 (COVID-19) pandemic in a large hospital system in the United States. Obstet. Gynecol. 137, 403–404 (2021). (PMID: 33595244788408710.1097/AOG.0000000000004237) ; Arnaez, J. et al. Lack of changes in preterm delivery and stillbirths during COVID-19 lockdown in a European region. Eur. J. Pediatr. 180, 1997–2002 (2021). ; Pasternak, B. et al. Preterm birth and stillbirth during the COVID-19 pandemic in Sweden: a nationwide cohort study. Ann. Intern. Med. https://doi.org/10.7326/m20-6367 (2021). (PMID: 10.7326/m20-6367334284427808327) ; Riley, T., Nethery, E., Chung, E. K. & Souter, V. Impact of the COVID-19 pandemic on perinatal care and outcomes in the United States: an interrupted time series analysis. Birth https://doi.org/10.1111/birt.12606 (2021). (PMID: 10.1111/birt.1260634957595) ; Sun, S., Savitz, D. A. & Wellenius, G. A. Changes in adverse pregnancy outcomes associated with the COVID-19 pandemic in the United States. JAMA Netw. Open 4, e2129560 (2021). (PMID: 34652449852013110.1001/jamanetworkopen.2021.29560) ; Liu, S. et al. Pregnancy outcomes during the COVID-19 pandemic in Canada, March to August 2020. J. Obstet. Gynaecol. Can. 43, 1406–1415 (2021). (PMID: 3433211610.1016/j.jogc.2021.06.014) ; Khalil, A. et al. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA https://doi.org/10.1001/jama.2020.12746 (2020). (PMID: 10.1001/jama.2020.12746326488927435343) ; Okeke, E. N., Abubakar, I. S. & De Guttry, R. In Nigeria, stillbirths and newborn deaths increased during the COVID-19 pandemic. Health Aff. https://doi.org/10.1377/hlthaff.2021.00659 (2021). (PMID: 10.1377/hlthaff.2021.00659) ; Vaccaro, C., Mahmoud, F., Aboulatta, L., Aloud, B. & Eltonsy, S. The impact of COVID-19 first wave national lockdowns on perinatal outcomes: a rapid review and meta-analysis. BMC Pregnancy Childbirth 21, 676 (2021). (PMID: 34615505853208610.1186/s12884-021-04156-y) ; Yang, J. et al. COVID-19 pandemic and population-level pregnancy and neonatal outcomes: a living systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 100, 1756–1770 (2021). (PMID: 3409603410.1111/aogs.14206) ; Chmielewska, B. et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob. Health 9, e759–e772 (2021). (PMID: 33811827801205210.1016/S2214-109X(21)00079-6) ; Ochoa, L. B., Brockway, M., Stock, S. J. & Been, J. V. COVID-19 and maternal and perinatal outcomes. Lancet Glob. Health 9, e1063–e1064 (2021). (PMID: 34297958829394810.1016/S2214-109X(21)00295-3) ; Chiesa, V., Antony, G., Wismar, M. & Rechel, B. COVID-19 pandemic: health impact of staying at home, social distancing and ‘lockdown’ measures-a systematic review of systematic reviews. J. Public Health 43, e462–e481 (2021). (PMID: 10.1093/pubmed/fdab102) ; Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008). (PMID: 18177778713456910.1016/S0140-6736(08)60074-4) ; Todd, I. M. F., Miller, J. E., Rowe, S. L., Burgner, D. P. & Sullivan, S. G. Changes in infection-related hospitalizations in children following pandemic restrictions: an interrupted time-series analysis of total population data. Int. J. Epidemiol. 50, 1435–1443 (2021). (PMID: 3405666410.1093/ije/dyab101) ; Jones, N. How COVID-19 is changing the cold and flu season. Nature 588, 388–390 (2020). (PMID: 3332400510.1038/d41586-020-03519-3) ; Stieb, D. M., Chen, L., Eshoul, M. & Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100–111 (2012). (PMID: 2272680110.1016/j.envres.2012.05.007) ; Ju, L. et al. Maternal air pollution exposure increases the risk of preterm birth: evidence from the meta-analysis of cohort studies. Environ. Res. 202, 111654 (2021). (PMID: 3425243010.1016/j.envres.2021.111654) ; Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl Acad. Sci. USA 117, 18984–18990 (2020). (PMID: 32723816743099710.1073/pnas.2006853117) ; Sarmadi, M., Rahimi, S., Rezaei, M., Sanaei, D. & Dianatinasab, M. Air quality index variation before and after the onset of COVID-19 pandemic: a comprehensive study on 87 capital, industrial and polluted cities of the world. Environ. Sci. Eur. 33, 134 (2021). (PMID: 34900511864529710.1186/s12302-021-00575-y) ; Kotlar, B., Gerson, E., Petrillo, S., Langer, A. & Tiemeier, H. The impact of the COVID-19 pandemic on maternal and perinatal health: a scoping review. Reprod. Health 18, 10 (2021). (PMID: 33461593781256410.1186/s12978-021-01070-6) ; Hale, T., et al. Oxford COVID-19 Government Response Tracker. Blavatnik School of Government www.bsg.ox.ac.uk/covidtracker (2020). ; Ashorn, P. et al. The Lancet Small Vulnerable Newborn Series: science for a healthy start. Lancet 396, 743–745 (2020). (PMID: 3291949810.1016/S0140-6736(20)31906-1) ; Kramer, M. S., Zhang, X. & Platt, R. W. Analyzing risks of adverse pregnancy outcomes. Am. J. Epidemiol. 179, 361–367 (2014). (PMID: 2428746810.1093/aje/kwt285) ; Ananth, C. V. & Vintzileos, A. M. Epidemiology of preterm birth and its clinical subtypes. J. Matern. Fetal Neonatal Med. 19, 773–782 (2006). (PMID: 1719068710.1080/14767050600965882) ; Cuestas, E. et al. Association between COVID-19 mandatory lockdown and decreased incidence of preterm births and neonatal mortality. J. Perinatol. 41, 2566–2569 (2021). (PMID: 34050246816248710.1038/s41372-021-01116-4) ; Khalil, A. et al. Change in obstetric attendance and activities during the COVID-19 pandemic. Lancet Infect. Dis. https://doi.org/10.1016/s1473-3099(20)30779-9 (2020). (PMID: 10.1016/s1473-3099(20)30779-9330317547535627) ; Allotey, J. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. Brit. Med. J. 370, m3320 (2020). (PMID: 3287357510.1136/bmj.m3320) ; Villar, J. et al. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 175, 817–826 (2021). (PMID: 3388574010.1001/jamapediatrics.2021.1050) ; Stock, S. J. et al. SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland. Nat. Med. https://doi.org/10.1038/s41591-021-01666-2 (2022). (PMID: 10.1038/s41591-021-01666-2351218248815288) ; Walani, S. R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 150, 31–33 (2020). (PMID: 3252459610.1002/ijgo.13195) ; von Wissmann, B. et al. Informing prevention of stillbirth and preterm birth in Malawi: development of a minimum dataset for health facilities participating in the DIPLOMATIC collaboration. BMJ Open 10, e038859 (2020). (PMID: 10.1136/bmjopen-2020-038859) ; World Health Organization & Others. Every newborn: an action plan to end preventable deaths. WHO, UNICEF https://apps.who.int/iris/bitstream/handle/10665/127938/9789241507448_eng.pdf (2014). ; Brabin, P. et al. The International Stillbirth Alliance: connecting for life. Lancet 377, 1313 (2011). (PMID: 2149769110.1016/S0140-6736(11)60530-8) ; Frøen, J. F. et al. Stillbirths: progress and unfinished business. Lancet 387, 574–586 (2016). (PMID: 2679407710.1016/S0140-6736(15)00818-1) ; Homer, C. S. E. et al. Counting stillbirths and COVID 19-there has never been a more urgent time. Lancet Glob. Health 9, e10–e11 (2021). (PMID: 3321202910.1016/S2214-109X(20)30456-3) ; Lee, S. J., Steer, P. J. & Filippi, V. Seasonal patterns and preterm birth: a systematic review of the literature and an analysis in a London-based cohort. BJOG 113, 1280–1288 (2006). (PMID: 1712034910.1111/j.1471-0528.2006.01055.x) ; Frøen, J. F. et al. eRegistries: Electronic registries for maternal and child health. BMC Pregnancy Childbirth 16, 11 (2016). (PMID: 26791790472106910.1186/s12884-016-0801-7) ; Stock, S. J. et al. The international Perinatal Outcomes in the Pandemic (iPOP) study: protocol. Wellcome Open Res. 6, 21 (2021). (PMID: 34722933852429910.12688/wellcomeopenres.16507.1) ; von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull. World Health Organ. 85, 867–872 (2007). (PMID: 10.2471/BLT.07.045120) ; Jones, K. H., Ford, D. V., Thompson, S. & Lyons, R. A. A Profile of the SAIL Databank on the UK Secure Research Platform. Int. J. Popul. Data Sci. 4, 1134 (2019). (PMID: 340955418142954) ; The World Bank - DataBank The World Bank https://databank.worldbank.org/home.aspx (2022). ; Lawn, J. E. et al. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth 10 Suppl 1, S1 (2010). ; World Health Organization Neonatal and perinatal mortality: country, regional and global estimates (World Health Organization, 2006). ; Quinn, J.-A. et al. Preterm birth: case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 34, 6047–6056 (2016). (PMID: 27743648513980810.1016/j.vaccine.2016.03.045) ; Bernal, J. L., Cummins, S. & Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: a tutorial. Int. J. Epidemiol. 46, 348–355 (2017). (PMID: 27283160) ; Akaike, H. in Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998). ; DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986). (PMID: 380283310.1016/0197-2456(86)90046-2) ; Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Res. Synth. Methods 2, 61–76 (2011). ; Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. Brit. Med. J. 327, 557–560 (2003). (PMID: 1295812019285910.1136/bmj.327.7414.557)
  • Grant Information: 001 International WHO_ World Health Organization; 209560/Z/17/Z United Kingdom WT_ Wellcome Trust; R35 GM138353 United States GM NIGMS NIH HHS
  • Entry Date(s): Date Created: 20230227 Date Completed: 20230517 Latest Revision: 20240306
  • Update Code: 20240306
  • PubMed Central ID: PMC10129868

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -