Zum Hauptinhalt springen

Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi Trichoderma guizhouense NJAU4742 under acid stress.

Zhu, H ; Li, T ; et al.
In: Environmental microbiology, Jg. 25 (2023-02-01), Heft 2, S. 331-351
Online academicJournal

Titel:
Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi Trichoderma guizhouense NJAU4742 under acid stress.
Autor/in / Beteiligte Person: Zhu, H ; Li, T ; Li, C ; Liu, Y ; Miao, Y ; Liu, D ; Shen, Q
Link:
Zeitschrift: Environmental microbiology, Jg. 25 (2023-02-01), Heft 2, S. 331-351
Veröffentlichung: Oxford : Blackwell Science, 1999-, 2023
Medientyp: academicJournal
ISSN: 1462-2920 (electronic)
DOI: 10.1111/1462-2920.16286
Schlagwort:
  • Kynurenine metabolism
  • NAD metabolism
  • Soil
  • Protons
  • Apoptosis genetics
  • Acetaldehyde metabolism
  • Hypocreales metabolism
  • Trichoderma genetics
  • Trichoderma metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Environ Microbiol] 2023 Feb; Vol. 25 (2), pp. 331-351. <i>Date of Electronic Publication: </i>2022 Nov 22.
  • MeSH Terms: Hypocreales* / metabolism ; Trichoderma* / genetics ; Trichoderma* / metabolism ; Kynurenine / metabolism ; NAD / metabolism ; Soil ; Protons ; Apoptosis / genetics ; Acetaldehyde / metabolism
  • References: Almeida, B., Ohlmeier, S., Almeida, A.J., Madeo, F., Leão, C., Rodrigues, F. et al. (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 9, 720-732. ; Arafat, Y., Tayyab, M., Khan, M.U., Chen, T., Amjad, H., Awais, S. et al. (2019) Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy, 9, 466. ; Armstrong, J.A., Cash, N.J., Ouyang, Y., Morton, J.C., Chvanov, M., Latawiec, D. et al. (2018) Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. The Journal of Biological Chemistry, 293, 8032-8047. ; Badri, D.V. & Vivanco, J.M. (2009) Regulation and function of root exudates. Plant, Cell & Environment, 32, 666-681. ; Catlett, M.G. & Forsburg, S.L. (2003) Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Molecular Biology of the Cell, 14, 4707-4720. ; Cuevas-Velazquez, C.L., Vellosillo, T., Guadalupe, K., Schmidt, H.B., Yu, F., Moses, D. et al. (2021) Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nature Communications, 12, 1-12. ; Dalton, S., Smith, K., Singh, K., Kaiser, H., Kolhe, R., Mondal, A.K. et al. (2020) Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Experimental Gerontology, 130, 110800. ; de Oliveira, S., Lino, F., Bajic, D., Vila, J.C.C., Sánchez, A. & Sommer, M.O.A. (2021) Ethanol exposure increases mutation rate through error-prone polymerases. Nature Communications, 12, 1-12. ; Dumont, S. & Rivoal, J. (2019) Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Frontiers in Plant Science, 10, 166. ; Eram, M.S. & Ma, K. (2013) Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules, 3, 578-596. ; Gadd, G. & White, C.J.M. (1985) Copper uptake by Penicillium ochro-chloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. Biology Microbiology, 131, 1875-1879. ; Gimenez-Gomez, P., Pérez-Hernández, M., Gutiérrez-López, M.D., Vidal, R., Abuin-Martínez, C., & O'Shea, E. (2018) Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens. Neuropharmacology, 135, 581-591. ; Gross, S. & Robbins, E.I. (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia, 433, 91-109. ; Guan, N. & Liu, L. (2020) Microbial response to acid stress: mechanisms and applications. Microbial Biotechnology, 104, 51-65. ; Guaragnella, N., Antonacci, L., Passarella, S., Marra, E. & Giannattasio, S. (2011) Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochemical Society Transactions, 39, 1538-1543. ; Guaragnella, N. & Bettiga, M. (2021) Acetic acid stress in budding yeast: from molecular mechanisms to applications. Yeast, 38, 391-400. ; Gutierrez-Ruiz, M.C., Gomez Quiroz, L.E., Hernandez, E., Bucio, L., Souza, V., Llorente, L. et al. (2001) Cytokine response and oxidative stress produced by ethanol, acetaldehyde and endotoxin treatment in HepG2 cells. The Israel Medical Association Journal, 3, 131-136. ; Hepler, C. & Bass, J. (2021) Supplements to treat prediabetes. Science, 372, 1147-1148. ; Hou, B.-H., Takanaga, H., Grossmann, G., Chen, L.Q., Qu, X.Q., Jones, A.M. et al. (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nature Protocols, 6, 1818-1833. ; Hu, W., Feng, S., Tong, Y., Zhang, H. & Yang, H. (2020) Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: advances and perspectives. Biotechnology Advances, 42, 107580. ; Irokawa, H., Numasaki, S., Kato, S., Iwai, K., Inose-Maruyama, A., Ohdate, T. et al. (2021) Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. The Biochemical Journal, 478, 1453-1470. ; Joseph-Horne, T., Hollomon, D.W. & Wood, P.M. (2001) Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta, 1504, 179-195. ; Jud, W., Vanzo, E., Li, Z., Ghirardo, A., Zimmer, I., Sharkey, T.D. et al. (2016) Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar. Plant, Cell & Environment, 39, 1204-1215. ; Kondo, H., Ratcliffe, C.D.H., Hooper, S., Ellis, J., MacRae, J.I., Hennequart, M. et al. (2021) Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Reports, 34, 108750. ; Lemos, V., De Oliveira, R.M., Naia, L., Szegö, É., Ramos, E., Pinho, S. et al. (2017) The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 26, 4105-4117. ; Li, M., Kirtane, A.R., Kiyokawa, J., Nagashima, H., Lopes, A., Tirmizi, Z.A. et al. (2020) Local targeting of NAD+ salvage pathway alters the immune tumor microenvironment and enhances checkpoint immunotherapy in glioblastoma. Cancer Research, 80, 5024-5034. ; Li, S., Li, Y., Rushing, B.R., Harris, S.E., McRitchie, S.L., Dominguez, D. et al. (2022) Multi-omics analysis of multiple glucose-sensing receptor systems in yeast. Biomolecules, 12, 175. ; Li, Y., Li, Y., Li, R., Liu, L., Miao, Y., & Weng, P. (2021) Metabolic changes of Issatchenkia orientalis under acetic acid stress by transcriptome profile using RNA-sequencing. International Microbiology, 25, 417-426. ; Liang, H.W., Yang, T.Y., Teng, C.S., Lee, Y.J., Yu, M.H., Lee, H.J. et al. (2021) Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals. International Journal of Medical Sciences, 18, 53-64. ; Lindahl, L., Genheden, S., Faria-Oliveira, F., Allard, S., Eriksson, L.A., & Olsson, L. (2018) Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance. Microb. Cell, 5, 42. ; Liu, C.C., Wang, H., Wang, W.D., Wang, L., Liu, W.J., & Wang, J.H. (2018) ENO2 promotes cell proliferation, glycolysis, and glucocorticoid-resistance in acute lymphoblastic leukemia. Cellular Physiology and Biochemistry, 46, 1525-1535. ; Luengo, A., Li, Z., Gui, D.Y., Sullivan, L.B., Zagorulya, M., do, B.T. et al. (2021) Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Molecular Cell, 81, 691-707.e6. ; Mahon, M.J. (2011) pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Advances in Bioscience and Biotechnology, 2, 132-137. ; Miao, Y., Chen, X., Li, T., Zhu, H., Tang, S., Liu, D. et al. (2020) Proteomic analysis reflects an environmental alkalinization-coupled pH-dependent mechanism of regulating lignocellulases in Trichoderma guizhouense NJAU4742. Biotechnology for Biofuels, 13, 1-15. ; Miao, Y., Xia, Y., Kong, Y., Zhu, H., Mei, H., Li, P. et al. (2021) Overcoming diverse HRs and sgRNA competitive inhibition enhances Cas9-based cyclical multiple genes coediting in filamentous fungi. Environmental Microbiology, 23, 2937-2954. ; Nadai, C., Crosato, G., Giacomini, A. & Corich, V. (2021) Different gene expression patterns of hexose transporter genes modulate fermentation performance of four Saccharomyces cerevisiae strains. Fermentation, 7, 164. ; Ndukwe, J.K., Aliyu, G.O., Onwosi, C.O., Chukwu, K.O. & Ezugworie, F.N. (2020) Mechanisms of weak acid-induced stress tolerance in yeasts: prospects for improved bioethanol production from lignocellulosic biomass. Process Biochemistry, 90, 118-130. ; Ning, Q., Chen, L., Jia, Z., Zhang, C., Ma, D., Li, F. et al. (2020) Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture Ecosystems & Environment, 293, 106837. ; Nissen, L.S. & Basen, M. (2019) The emerging role of aldehyde: ferredoxin oxidoreductases in microbially-catalyzed alcohol production. Journal of Biotechnology, 306, 105-117. ; Oh, E.J., Wei, N., Kwak, S., Kim, H. & Jin, Y.-S. (2019) Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. Journal of Biotechnology, 292, 1-4. ; Palma, M., Guerreiro, J.F. & Sá-Correia, I. (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Frontiers in Microbiology, 9, 274. ; Pantigoso, H.A., Yuan, J., He, Y., Guo, Q., Vollmer, C. & Vivanco, J.M. (2020) Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. PLoS One, 15, e0234216. ; Picazo, C., McDonagh, B., Peinado, J., Bárcena, J.A., Matallana, E. & Aranda, A. (2019) Saccharomyces cerevisiae cytosolic thioredoxins control glycolysis, lipid metabolism, and protein biosynthesis under wine-making conditions. Applied and Environmental Microbiology, 85, e02953-e02918. ; Pladzyk, A., Baranowska, K. & Hapter, P. (2010) Synthesis, spectroscopy and crystal structure determination of heteroleptic cobalt (II) silanethiolates with pyridine derivatives. Transition Metal Chemistry, 35, 373-379. ; Powers, R.K., Culp-Hill, R., Ludwig, M.P., Smith, K.P., Waugh, K.A., Minter, R. et al. (2019) Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nature Communications, 10, 1-11. ; Qiu, X., Zhang, Y. & Hong, H.J.A.E. (2021) Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express, 11, 1-15. ; Raza, S., Miao, N., Wang, P., Ju, X., Chen, Z., Zhou, J. et al. (2020) Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology, 26, 3738-3751. ; Reyer, A., Häßler, M., Scherzer, S., Huang, S., Pedersen, J.T., al-Rascheid, K.A.S. et al. (2020) Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proceedings of the National Academy of Sciences, 117, 20920-20925. ; Salas-Navarrete, P.C., de Oca Miranda, A.I.M., Martínez, A. & Caspeta, L. (2022) Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature. Applied Microbiology and Biotechnology, 106, 383-399. ; Scharff-Poulsen, P., Moriya, H. & Johnston, M. (2018) Genetic analysis of signal generation by the Rgt2 glucose sensor of Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 8, 2685-2696. ; Sharma, V.K., Singh, T.G., Prabhakar, N.K. & Mannan, A. (2022) Kynurenine metabolism and alzheimer's disease: the potential targets and approaches. Neurochemical Research, 47, 1459-1476. ; Shen, J., Luo, Y., Tao, Q., White, P.J., Sun, G., Li, M. et al. (2022) The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. The Science of the Total Environment, 828, 154524. ; Shen, Y., Rosendale, M., Campbell, R.E. & Perrais, D. (2014) pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. Journal of Cell Biology, 207, 419-432. ; Shimizu, M. (2018) NAD+/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Bioscience, Biotechnology, and Biochemistry, 82, 216-224. ; Sinclair, L.V., Neyens, D., Ramsay, G., Taylor, P.M. & Cantrell, D.A. (2018) Single cell analysis of kynurenine and system L amino acid transport in T cells. Nature Communications, 9, 1-11. ; Sodhi, R.K., Bansal, Y., Singh, R., Saroj, P., Bhandari, R., Kumar, B. et al. (2021) IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson's disease. Neurotoxicology, 84, 184-197. ; Stein, L.R. & Imai, S.-i. The dynamic regulation of NAD metabolism in mitochondria. Trends in Endocrinology and Metabolism 23, 420-428 (2012). ; Su, W., Ren, Y., Wang, D., Su, Y., Feng, J., Zhang, C. et al. (2020) The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics, 21, 1-17. ; Sugiura, K., Mihara, S., Fu, N. & Hisabori, T. (2020) Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B. Proceedings of the National Academy of Sciences of the United States of America, 117, 16019-16026. ; Suo, C., Yang, Y., Yuan, Z., Zhang, T., Yang, X., Qing, T. et al. (2019) Alcohol intake interacts with functional genetic polymorphisms of aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) to increase esophageal squamous cell cancer risk. Journal of Thoracic Oncology, 14, 712-725. ; Takata, T., Araki, S., Tsuchiya, Y. & Watanabe, Y. (2020) Oxidative stress orchestrates MAPK and nitric-oxide synthase signal. International Journal of Molecular Sciences, 21, 8750. ; Tan, P., Wang, M., Zhong, A., Wang, Y., du, J., Wang, J. et al. (2021) SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene, 40, 6081-6092. ; Theron, M.M. & Lues, J.R. (2010) Organic acids and food preservation. Boca Raton, FL: CRC press. ; Ventura, I., Brunello, L., Iacopino, S., Valeri, M.C., Novi, G., Dornbusch, T. et al. (2020) Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Scientific Reports, 10, 1-14. ; Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutellingsperger, C. (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of Immunological Methods, 184, 39-51. ; Wunderlich, A., Azevedo, S.C.S.F., Yamada, L.A., Bataglini, C., Previate, C., Campanholi, K.S.S., et al. (2019) Chlorophyll treatment combined with photostimulation increases glycolysis and decreases oxidative stress in the liver of type 1 diabetic rats. Brazilian Journal of Medical and Biological Research, 53. ; Xiang-de, Y., Ni, K.,Yuan-zhi, S., Yi, X., Zang, Q., Fang, L., Ma, L., & Ruan, J.  (2018) Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems and Environment, 252, 74-82. ; Xu, X., Wang, J., Bao, M., Niu, C., Liu, C., Zheng, F. et al. (2019) Reverse metabolic engineering in lager yeast: impact of the NADH/NAD+ ratio on acetaldehyde production during the brewing process. Applied Microbiology and Biotechnology, 103, 869-880. ; Xuan, L., Hua, J., Zhang, F., Wang, Z., Pei, X., Yang, Y. et al. (2021) Identification and functional analysis of ThADH1 and ThADH4 genes involved in tolerance to waterlogging stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes (Basel), 12, 225. ; Yan, L.J. (2018) Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Animal Models and Experimental Medicine, 1, 7-13. ; Yan, P., Wu, L., Wang, D., Fu, J., Shen, C., Li, X. et al. (2020) Soil acidification in Chinese tea plantations. Science of the Total Environment, 715, 136963. ; Yan, T., Zhao, Y., Zhang, X.J.O.M. & Longevity, C. (2016) Acetaldehyde induces cytotoxicity of SH-SY5Y cells via inhibition of Akt activation and induction of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1-9. ; Yu, Z., Chen, H.Y.H., Searle, E.B., Sardans, J., Ciais, P., Peñuelas, J. et al. (2020) Whole soil acidification and base cation reduction across subtropical China. Geoderma, 361, 114107. ; Zhang, X., Guo, J., Vogt, R.D., Mulder, J., Wang, Y., Qian, C. et al. (2020) Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma, 366, 114234. ; Zhang, X.-J., Yuan, Z.W., Qu, C., Yu, X.T., Huang, T., Chen, P.V. et al. (2018) Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacological Research, 137, 34-46. ; Zou, Y., Wang, A., Huang, L., Zhu, X., Hu, Q., Zhang, Y. et al. (2020) Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Developmental Cell, 53, 240-252. e7.
  • Substance Nomenclature: 343-65-7 (Kynurenine) ; 0U46U6E8UK (NAD) ; 0 (Soil) ; 0 (Protons) ; GO1N1ZPR3B (Acetaldehyde)
  • SCR Organism: Trichoderma guizhouense
  • Entry Date(s): Date Created: 20221111 Date Completed: 20230213 Latest Revision: 20230322
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -