Zum Hauptinhalt springen

3D-printed machines that manipulate microscopic objects using capillary forces.

Zeng, C ; Faaborg, MW ; et al.
In: Nature, Jg. 611 (2022-11-01), Heft 7934, S. 68-73
Online academicJournal

Titel:
3D-printed machines that manipulate microscopic objects using capillary forces.
Autor/in / Beteiligte Person: Zeng, C ; Faaborg, MW ; Sherif, A ; Falk, MJ ; Hajian, R ; Xiao, M ; Hartig, K ; Bar-Sinai, Y ; Brenner, MP ; Manoharan, VN
Link:
Zeitschrift: Nature, Jg. 611 (2022-11-01), Heft 7934, S. 68-73
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2022
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-022-05234-7
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Nature] 2022 Nov; Vol. 611 (7934), pp. 68-73. <i>Date of Electronic Publication: </i>2022 Oct 26.
  • References: Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997). (PMID: 10.1126/science.276.5310.2339092466) ; Tien, J., Breen, T. L. & Whitesides, G. M. Crystallization of millimeter-scale objects with use of capillary forces. J. Am. Chem. Soc. 120, 12670–12671 (1998). (PMID: 10.1021/ja982246y) ; Liu, I. B., Sharifi-Mood, N. & Stebe, K. J. Capillary assembly of colloids: interactions on planar and curved interfaces. Annu. Rev. Condens. Matter Phys. 9, 283–305 (2018). (PMID: 10.1146/annurev-conmatphys-031016-025514) ; Yao, L. et al. Near field capillary repulsion. Soft Matter 9, 779–786 (2012). (PMID: 10.1039/C2SM27020J) ; de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004); https://doi.org/10.1007/978-0-387-21656-0 . ; Vella, D. & Mahadevan, L. The “Cheerios effect”. Am. J. Phys. 73, 817–825 (2005). (PMID: 10.1119/1.1898523) ; Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). (PMID: 10.1364/OL.11.00028819730608) ; Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008). (PMID: 10.1146/annurev.biochem.77.043007.09022518307407) ; Ho, I., Pucci, G. & Harris, D. M. Direct measurement of capillary attraction between floating disks. Phys. Rev. Lett. 123, 254502 (2019). (PMID: 10.1103/PhysRevLett.123.25450231922794) ; Artin, E. Theory of braids. Ann. Math. 48, 101–126 (1947). (PMID: 10.2307/1969218) ; Branscomb, D., Beale, D. & Broughton, R. New directions in braiding. J. Eng. Fibers Fabrics 8, 11–24 (2013). ; Kyosev, Y. Braiding Technology for Textiles (Woodhead, 2014). ; Phillips, J. P. Carbon nano tube Litz wire for low loss inductors and resonators. US patent 8,017,864 (2011). ; Marchand, P. et al. Braiding mechanism and methods of use. US patent 8,261,648 (2012). ; Giszter, S., Kim, T. G. & Ramakrishnan, A. Method and apparatus for braiding micro strands. US patent 8,534,176 (2013). ; Head, A. A. & Ivers, V. M. Rapidly configurable braiding machine. US patent application 14/959,661 (2016). ; Duwel, A., LeBlanc, J., Carter, D. J. & Kim, E. S. Directed assembly of braided, woven or twisted wire. US patent application 15/248,238 (2017). ; Quick, R., Thress, C. & Ulrich, G. Braiding machine and methods of use. US patent application 16/754,830 (2020). ; Zhang, M., Atkinson, K. R. & Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004). (PMID: 10.1126/science.110427615550667) ; Murnen, H. K., Rosales, A. M., Jaworski, J. N., Segalman, R. A. & Zuckermann, R. N. Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. J. Am. Chem. Soc. 132, 16112–16119 (2010). (PMID: 10.1021/ja106340f20964429) ; Lu, Y. et al. Braiding ultrathin Au nanowires into ropes. J. Am. Chem. Soc. 142, 10629–10633 (2020). (PMID: 10.1021/jacs.0c0344532479732) ; Joanny, J. F. & de Gennes, P. G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984). (PMID: 10.1063/1.447337) ; Sun, G., Liu, J., Zheng, L., Huang, W. & Zhang, H. Preparation of weavable, all-carbon fibers for non-volatile memory devices. Angew. Chem. 125, 13593–13597 (2013). (PMID: 10.1002/ange.201306770) ; Howe, G. W. O. & Mather, T. The high-frequency resistance of multiply-stranded insulated wire. Proc. R. Soc. Lond. A 93, 468–492 (1917). (PMID: 10.1098/rspa.1917.0033) ; Hurley, W. G., Duffy, M. C., Acero, J., Ouyang, Z. & Zhang, J. Magnetic circuit design for power electronics. In Power Electronics Handbook (ed. Rashid, M. H.) 571–589 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811407-0.00019-2 . ; Schulz, M. J. et al. New applications and techniques for nanotube superfiber development. In Nanotube Superfiber Materials (eds Schulz, M. J. et al.) 33–59 (William Andrew, 2014). ; Aydin, A. Electrospun Polymer Nanofiber Scaffolds for Functionalized Long Sub-micron Diameter Cables. PhD thesis, Harvard Univ. (2019). ; Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338, 928–932 (2012). (PMID: 10.1126/science.122676223161994) ; Foerster, S. A. & Clemente, S. Optimized suture braid. US patent application 10/803,455 (2006). ; Ayranci, C. & Carey, J. 2D braided composites: a review for stiffness critical applications. Compos. Struct. 85, 43–58 (2008). (PMID: 10.1016/j.compstruct.2007.10.004) ; Singh, P. & Joseph, D. D. Fluid dynamics of floating particles. J. Fluid Mech. 530, 31–80 (2005). (PMID: 10.1017/S0022112005003575) ; Mao, Z.-S., Yang, C. & Chen, J. Mathematical modeling of a hydrophilic cylinder floating on water. J. Colloid Interface Sci. 377, 463–468 (2012). (PMID: 10.1016/j.jcis.2012.03.08122520711) ; Malagnino, N., Pesce, G., Sasso, A. & Arimondo, E. Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Commun. 214, 15–24 (2002). (PMID: 10.1016/S0030-4018(02)02119-3) ; Zhang, Z., Wang, X., Liu, J., Dai, C. & Sun, Y. Robotic micromanipulation: fundamentals and applications. Annu. Rev. Control Robot. Auton. Syst. 2, 181–203 (2019). (PMID: 10.1146/annurev-control-053018-023755) ; Wang, X.-B., Huang, Y., Gascoyne, P. R. C. & Becker, F. F. Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl. 33, 660–669 (1997). (PMID: 10.1109/28.585855) ; Tanase, M., Biais, N. & Sheetz, M. Magnetic tweezers in cell biology. In Methods in Cell Biology Vol. 83 (eds Wang, Y.-L. & Discher, D. E.) 473–493 (Academic, 2007). ; Schneider, T. M., Mandre, S. & Brenner, M. P. Algorithm for a microfluidic assembly line. Phys. Rev. Lett. 106, 094503 (2011). (PMID: 10.1103/PhysRevLett.106.09450321405629) ; Shenoy, A., Rao, C. V. & Schroeder, C. M. Stokes trap for multiplexed particle manipulation and assembly using fluidics. Proc. Nat. Am. Soc. 113, 3976–3981 (2016). (PMID: 10.1073/pnas.1525162113) ; Liu, Y. et al. Manipulation of nanoparticles and biomolecules by electric field and surface tension. Comput. Meth. Appl. Mech. Eng. 197, 2156–2172 (2008). (PMID: 10.1016/j.cma.2007.08.012)
  • Entry Date(s): Date Created: 20221026 Date Completed: 20221107 Latest Revision: 20221107
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -