Zum Hauptinhalt springen

SDC4-rs1981429 and ATM-rs228590 may provide early biomarkers of breast cancer risk.

Vuorinen, SI ; Okolicsanyi, RK ; et al.
In: Journal of cancer research and clinical oncology, Jg. 149 (2023-07-01), Heft 8, S. 4563-4578
Online academicJournal

Titel:
SDC4-rs1981429 and ATM-rs228590 may provide early biomarkers of breast cancer risk.
Autor/in / Beteiligte Person: Vuorinen, SI ; Okolicsanyi, RK ; Gyimesi, M ; Meyjes-Brown, J ; Saini, D ; Pham, SH ; Griffiths, LR ; Haupt, LM
Link:
Zeitschrift: Journal of cancer research and clinical oncology, Jg. 149 (2023-07-01), Heft 8, S. 4563-4578
Veröffentlichung: Berlin ; New York : Springer-Verlag., 2023
Medientyp: academicJournal
ISSN: 1432-1335 (electronic)
DOI: 10.1007/s00432-022-04236-2
Schlagwort:
  • Female
  • Humans
  • Syndecan-4 metabolism
  • Proto-Oncogene Proteins c-akt metabolism
  • Phosphatidylinositol 3-Kinases metabolism
  • Australia
  • Heparan Sulfate Proteoglycans metabolism
  • Biomarkers
  • Serine
  • Ataxia Telangiectasia Mutated Proteins metabolism
  • Breast Neoplasms pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Cancer Res Clin Oncol] 2023 Jul; Vol. 149 (8), pp. 4563-4578. <i>Date of Electronic Publication: </i>2022 Sep 24.
  • MeSH Terms: Breast Neoplasms* / pathology ; Female ; Humans ; Syndecan-4 / metabolism ; Proto-Oncogene Proteins c-akt / metabolism ; Phosphatidylinositol 3-Kinases / metabolism ; Australia ; Heparan Sulfate Proteoglycans / metabolism ; Biomarkers ; Serine ; Ataxia Telangiectasia Mutated Proteins / metabolism
  • References: Araki K, Miyoshi Y (2018) Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 25(4):392–401. https://doi.org/10.1007/s12282-017-0812-x. (PMID: 10.1007/s12282-017-0812-x29086897) ; Arnone P, Zurrida S, Viale G, Dellapasqua S, Montagna E, Arnaboldi P, Intra M, Veronesi U (2010) The TNM classification of breast cancer: need for change. Updates Surg 62(2):75–81. https://doi.org/10.1007/s13304-010-0014-y. (PMID: 10.1007/s13304-010-0014-y20845013) ; Australian Institute of Health and Welfare (2020) BreastScreen Australia monitoring report 2020. ; Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos NK (2014) Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol. https://doi.org/10.3389/fonc.2014.00004. (PMID: 10.3389/fonc.2014.00004245515913910246) ; Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, Sotiriou C (2018) Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol 29(4):895–902. https://doi.org/10.1093/annonc/mdy024. (PMID: 10.1093/annonc/mdy024293650315913636) ; Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani Y, Kamal M, Garnier S, Meurice G, Jimenez M, Dogan S, Verret B, Chaffanet M, Bachelot T, Campone M, Lefeuvre C, Bonnefoi H, Dalenc F, Jacquet A, De Filippo MR, Babbar N, Birnbaum D, Filleron T, Le Tourneau C, Andre F (2019) Genomic characterization of metastatic breast cancers. Nature 569(7757):560–564. https://doi.org/10.1038/s41586-019-1056-z. (PMID: 10.1038/s41586-019-1056-z31118521) ; Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037. https://doi.org/10.1038/nature05817. (PMID: 10.1038/nature0581717460664) ; Bonin S, Pracella D, Barbazza R, Dotti I, Boffo S, Stanta G (2019) PI3K/AKT Signaling in Breast Cancer Molecular Subtyping and Lymph Node Involvement. Dis Markers. https://doi.org/10.1155/2019/7832376. (PMID: 10.1155/2019/7832376317813066875411) ; Chacon-Cortes D, Haupt LM, Lea RA, Griffiths LR (2012) Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study. Mol Biol Rep 39(5):5961–5966. https://doi.org/10.1007/s11033-011-1408-8. (PMID: 10.1007/s11033-011-1408-822228086) ; Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730. https://doi.org/10.1038/nature03918. (PMID: 10.1038/nature03918160798511939938) ; Christianson H, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55. https://doi.org/10.1016/j.matbio.2013.10.004. (PMID: 10.1016/j.matbio.2013.10.00424145152) ; Corti F, Finetti F, Ziche M, Simons M (2013) The syndecan-4/protein kinase Calpha pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo. J Biol Chem 288(18):12712–12721. https://doi.org/10.1074/jbc.M113.452383. (PMID: 10.1074/jbc.M113.452383235251013642317) ; Couchman JR, Gopal S, Lim HC, Norgaard S, Multhaupt HA (2015) Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 96(1):1–10. https://doi.org/10.1111/iep.12112. (PMID: 10.1111/iep.1211225546317) ; Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M, Candido S, Nicoletti F, Polesez J, Maestro R, D'Assoro A, Drobot L, Rakus D, Gizak A, Laidler P, Dulinska-Litewka J, Basecke J, Mijatovic S, Maksimovic-Ivanic D, Montalto G, Cervello M, Fitzgerald TL, Demidenko Z, Martelli AM, Cocco L, Steelman LS, McCubrey JA (2014) Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 5(13): 4603-4650. https://doi.org/10.18632/oncotarget.2209. ; Elfenbein A, Simons M (2013) Syndecan-4 signaling at a glance. J Cell Sci 126(17):3799–3804. https://doi.org/10.1242/jcs.124636. (PMID: 10.1242/jcs.124636239704153757327) ; Gao C, Zhuang J, Zhou C, Li H, Liu C, Liu L, Feng F, Liu R, Sun C (2019) SNP mutation-related genes in breast cancer for monitoring and prognosis of patients: A study based on the TCGA database. Cancer Med 8(5):2303–2312. https://doi.org/10.1002/cam4.2065. (PMID: 10.1002/cam4.2065308830286537087) ; Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393. (PMID: 10.1038/nature15393) ; Gotting I, Jendrossek V, Matschke J (2020) A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci. https://doi.org/10.3390/ijms21228563. (PMID: 10.3390/ijms21228563332028667697684) ; Gross SM, Rotwein P (2016) Mapping growth-factor-modulated Akt signaling dynamics. J Cell Sci 129(10):2052–2063. https://doi.org/10.1242/jcs.183764. (PMID: 10.1242/jcs.183764270447574878993) ; Hinz N, Jucker M (2019) Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 17(1):154. https://doi.org/10.1186/s12964-019-0450-3. (PMID: 10.1186/s12964-019-0450-3317529256873690) ; Huang X, Reye G, Momot KI, Blick T, Lloyd T, Tilley WD, Hickey TE, Snell CE, Okolicsanyi RK, Haupt LM, Ferro V, Thompson EW, Hugo HJ (2020) Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Front Cell Dev Biol 8:599. https://doi.org/10.3389/fcell.2020.00599. (PMID: 10.3389/fcell.2020.00599327607227373078) ; Hwang SY, Kuk MU, Kim JW, Lee YH, Lee YS, Choy HE, Park SC, Park JT (2020) ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 55:54–63. https://doi.org/10.1016/j.mito.2020.09.002. (PMID: 10.1016/j.mito.2020.09.00232949791) ; Ju R, Simons M (2013) Syndecan 4 regulation of PDK1-dependent Akt activation. Cell Signal 25(1):101–105. https://doi.org/10.1016/j.cellsig.2012.09.007. (PMID: 10.1016/j.cellsig.2012.09.00722975683) ; Kaklamani VG, Richardson AL, Arteaga CL (2019) Exploring Biomarkers of Phosphoinositide 3-Kinase Pathway Activation in the Treatment of Hormone Receptor Positive, Human Epidermal Growth Receptor 2 Negative Advanced Breast Cancer. Oncologist 24(3):305–312. https://doi.org/10.1634/theoncologist.2018-0314. (PMID: 10.1634/theoncologist.2018-0314306513996519770) ; Kalmes R, Huret J (2001) Modèle de Hardy-Weinberg. Atlas Genet Cytogenet Oncol Haematol. ; Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150. https://doi.org/10.1200/JCO.2005.05.2308. (PMID: 10.1200/JCO.2005.05.230816682732) ; Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443. https://doi.org/10.1038/s41586-020-2308-7. (PMID: 10.1038/s41586-020-2308-7324616547334197) ; Knelson EH, Nee JC, Blobe GC (2014) Heparan sulfate signaling in cancer. Trends Biochem Sci 39(6):277–288. https://doi.org/10.1016/j.tibs.2014.03.001. (PMID: 10.1016/j.tibs.2014.03.001247554884065786) ; Kuba A, Raida L, Mrazek F, Schneiderova P, Kriegova E, Furst T, Furstova J, Faber E, Ambruzova Z, Papajik T (2015) ATM gene single nucleotide polymorphisms predict regimen-related gastrointestinal toxicity in patients allografted after reduced conditioning. Biol Blood Marrow Transplant 21(6):1136–1140. https://doi.org/10.1016/j.bbmt.2015.02.021. (PMID: 10.1016/j.bbmt.2015.02.02125759145) ; Li W, Hou J-Z, Niu J, Xi Z-Q, Ma C, Sun H, Wang C-J, Fang D, Li Q, Xie S-Q (2018) Akt1 inhibition promotes breast cancer metastasis through EGFR-mediated β-catenin nuclear accumulation. Cell Commun Signal 16(1):82. https://doi.org/10.1186/s12964-018-0295-1. (PMID: 10.1186/s12964-018-0295-1304459786240210) ; Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11(9):797–797. https://doi.org/10.1038/s41419-020-02998-6. (PMID: 10.1038/s41419-020-02998-6329731357515865) ; Machiela MJ, Chanock SJ (2015) LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31(21):3555–3557. https://doi.org/10.1093/bioinformatics/btv402. (PMID: 10.1093/bioinformatics/btv402261396354626747) ; Marty B, Maire V, Gravier E, Rigaill G, Vincent-Salomon A, Kappler M, Lebigot I, Djelti F, Tourdes A, Gestraud P, Hupe P, Barillot E, Cruzalegui F, Tucker GC, Stern MH, Thiery JP, Hickman JA, Dubois T (2008) Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 10(6):R101. https://doi.org/10.1186/bcr2204. (PMID: 10.1186/bcr2204190557542656897) ; McCart Reed AE, Kalaw EM, Lakhani SR (2021) An Update on the Molecular Pathology of Metaplastic Breast Cancer. Breast Cancer (dove Med Press) 13:161–170. https://doi.org/10.2147/BCTT.S296784. (PMID: 10.2147/BCTT.S29678433664587) ; Mochizuki M, Guc E, Park AJ, Julier Z, Briquez PS, Kuhn GA, Muller R, Swartz MA, Hubbell JA, Martino MM (2020) Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng 4(4):463–475. https://doi.org/10.1038/s41551-019-0469-1. (PMID: 10.1038/s41551-019-0469-131685999) ; Network TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412. (PMID: 10.1038/nature11412) ; Nie G, Wang H, Song Y, Mao Y, Cao W, Hu H (2017) Breast cancer in “young” women: Age cutoff and clinicopathologic features. J Clin Oncol 35(15):e12019–e12019. https://doi.org/10.1200/JCO.2017.35.15_suppl.e12019. (PMID: 10.1200/JCO.2017.35.15_suppl.e12019) ; Nishizawa D, Kasai S, Hasegawa J, Sato N, Tanioka F, Sugimura H, Ikeda K, Dobashi Y (2015) Association between AKT1 Gene Polymorphism rs2498794 and Smoking-Related Traits with reference to Cancer Susceptibility. Biomed Res Int. https://doi.org/10.1155/2015/316829. (PMID: 10.1155/2015/316829261374734475560) ; Okolicsanyi RK, van Wijnen AJ, Cool SM, Stein GS, Griffiths LR, Haupt LM (2014) Heparan sulfate proteoglycans and human breast cancer epithelial cell tumorigenicity. J Cell Biochem 115(5):967–976. https://doi.org/10.1002/jcb.24746. (PMID: 10.1002/jcb.24746243575464225069) ; Okolicsanyi RK, Buffiere A, Jacinto JM, Chacon-Cortes D, Chambers SK, Youl PH, Haupt LM, Griffiths LR (2015) Association of heparan sulfate proteoglycans SDC1 and SDC4 polymorphisms with breast cancer in an Australian Caucasian population. Tumour Biol 36(3):1731–1738. https://doi.org/10.1007/s13277-014-2774-3. (PMID: 10.1007/s13277-014-2774-325361632) ; Painter JN, Kaufmann S, O’Mara TA, Hillman KM, Sivakumaran H, Darabi H, Cheng T, Pearson J, Kazakoff S, Waddell N, Hoivik EA, Goode EL, Scott RJ, Tomlinson I, Dunning AM, Easton DF, French JD, Salvesen HB, Pollock PM, Thompson DJ, Spurdle AB, Edwards SL (2016) A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding. Am J Hum Genet 98(6):1159–1169. https://doi.org/10.1016/j.ajhg.2016.04.012. (PMID: 10.1016/j.ajhg.2016.04.012272590514908177) ; Paplomata E, O’Regan R (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 6(4):154–166. https://doi.org/10.1177/1758834014530023. (PMID: 10.1177/1758834014530023250573024107712) ; Renault AL, Mebirouk N, Fuhrmann L, Bataillon G, Cavaciuti E, Le Gal D, Girard E, Popova T, La Rosa P, Beauvallet J, Eon-Marchais S, Dondon MG, d'Enghien CD, Lauge A, Chemlali W, Raynal V, Labbe M, Bieche I, Baulande S, Bay JO, Berthet P, Caron O, Buecher B, Faivre L, Fresnay M, Gauthier-Villars M, Gesta P, Janin N, Lejeune S, Maugard C, Moutton S, Venat-Bouvet L, Zattara H, Fricker JP, Gladieff L, Coupier I, Co FA, GENESIS, kConFab, Chenevix-Trench G, Hall J, Vincent-Salomon A, Stoppa-Lyonnet D, Andrieu N, Lesueur F (2018) Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers. Breast Cancer Res 20(1): 28. https://doi.org/10.1186/s13058-018-0951-9. ; Rose G, Crocco P, De Rango F, Corsonello A, Lattanzio F, De Luca M, Passarino G (2015) Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. Mech Ageing Dev 150:27–33. https://doi.org/10.1016/j.mad.2015.08.003. (PMID: 10.1016/j.mad.2015.08.00326254886) ; Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6(5):e107. https://doi.org/10.1371/journal.pbio.0060107. (PMID: 10.1371/journal.pbio.0060107184620172365981) ; Sugahara K, Kitagawa H (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54(4):163–175. https://doi.org/10.1080/15216540214928. (PMID: 10.1080/1521654021492812512855) ; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660. (PMID: 10.3322/caac.2166033538338) ; Szollár A, Újhelyi M, Polgár C, Oláh E, Pukancsik D, Rubovszky G, Udvarhelyi N, Kovács T, Sávolt Á, Kenessey I, Mátrai Z (2019) A long-term retrospective comparative study of the oncological outcomes of 598 very young (≤35 years) and young (36–45 years) breast cancer patients. Eur J Surg Oncol 45(11):2009–2015. https://doi.org/10.1016/j.ejso.2019.06.007. (PMID: 10.1016/j.ejso.2019.06.00731189512) ; Tajouri L, Mellick AS, Tourtellotte A, Nagra RM, Griffiths LR (2005) An examination of MS candidate genes identified as differentially regulated in multiple sclerosis plaque tissue, using absolute and comparative real-time Q-PCR analysis. Brain Res Brain Res Protoc 15(2):79–91. https://doi.org/10.1016/j.brainresprot.2005.04.003. (PMID: 10.1016/j.brainresprot.2005.04.00315905117) ; Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96(5):488–500. https://doi.org/10.1161/01.RES.0000159708.71142.c8. (PMID: 10.1161/01.RES.0000159708.71142.c815774861) ; Veronesi U, Viale G, Rotmensz N, Goldhirsch A (2006) Rethinking TNM: breast cancer TNM classification for treatment decision-making and research. Breast 15(1):3–8. https://doi.org/10.1016/j.breast.2005.11.011. (PMID: 10.1016/j.breast.2005.11.01116473737) ; Verret B, Cortes J, Bachelot T, Andre F, Arnedos M (2019) Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol 30(Suppl 10):x12–x20. https://doi.org/10.1093/annonc/mdz381. (PMID: 10.1093/annonc/mdz381319286906923787) ; Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res 31(13):3688–3691. https://doi.org/10.1093/nar/gkg526. (PMID: 10.1093/nar/gkg52612824395168933) ; Wu W, Chen Y, Huang L, Li W, Tao C, Shen H (2020) Effects of AKT1 E17K mutation hotspots on the biological behavior of breast cancer cells. Int J Clin Exp Pathol 13(3): 332–346. https://www.ncbi.nlm.nih.gov/pubmed/32269671. ; Xiong H, Liao Z, Liu Z, Xu T, Wang Q, Liu H, Komaki R, Gomez D, Wang LE, Wei Q (2013) ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 85(4):1066–1073. https://doi.org/10.1016/j.ijrobp.2012.09.024. (PMID: 10.1016/j.ijrobp.2012.09.02423154078) ; Xu F, Na L, Li Y, Chen L (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10(1):54. https://doi.org/10.1186/s13578-020-00416-0. (PMID: 10.1186/s13578-020-00416-0322660567110906) ; Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18(1):26. https://doi.org/10.1186/s12943-019-0954-x. (PMID: 10.1186/s12943-019-0954-x307821876379961) ; Ye Y, Tang X, Sun Z, Chen S (2016) Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion. Oncotarget 7(14): 17854–17869. https://doi.org/10.18632/oncotarget.7439. ; Youl PH, Baade PD, Aitken JF, Chambers SK, Turrell G, Pyke C, Dunn J (2011) A multilevel investigation of inequalities in clinical and psychosocial outcomes for women after breast cancer. BMC Cancer 11:415. https://doi.org/10.1186/1471-2407-11-415. (PMID: 10.1186/1471-2407-11-415219513203195770) ; Yu Y, Savage RE, Eathiraj S, Meade J, Wick MJ, Hall T, Abbadessa G, Schwartz B (2015) Targeting AKT1-E17K and the PI3K/AKT Pathway with an allosteric AKT inhibitor, ARQ 092. PLoS ONE 10(10):e0140479. https://doi.org/10.1371/journal.pone.0140479. (PMID: 10.1371/journal.pone.0140479264696924607407) ; Zhang M, Lee AV, Rosen JM (2017) The cellular origin and evolution of breast cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a027128. (PMID: 10.1101/cshperspect.a027128280625565334246)
  • Contributed Indexing: Keywords: ATM serine/threonine kinase; Breast cancer; Heparan sulfate proteoglycans; Phosphatidyl-inositol-3-kinase/Protein kinase B pathway; Single-nucleotide polymorphism; Syndecan-4
  • Substance Nomenclature: 0 (Syndecan-4) ; EC 2.7.11.1 (Proto-Oncogene Proteins c-akt) ; EC 2.7.1.- (Phosphatidylinositol 3-Kinases) ; 0 (Heparan Sulfate Proteoglycans) ; 0 (Biomarkers) ; 452VLY9402 (Serine) ; 0 (SDC4 protein, human) ; EC 2.7.11.1 (ATM protein, human) ; EC 2.7.11.1 (Ataxia Telangiectasia Mutated Proteins)
  • Entry Date(s): Date Created: 20220924 Date Completed: 20230719 Latest Revision: 20230719
  • Update Code: 20240513
  • PubMed Central ID: PMC10349731

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -