Zum Hauptinhalt springen

Therapeutic Implications of UVB Irradiation in Cancer by Enhancing Anti-Tumor Immunity <superscript>†</superscript> .

Hafeez, BB ; Alvarado, EW ; et al.
In: Photochemistry and photobiology, Jg. 99 (2023-03-01), Heft 2, S. 874-877
Online academicJournal

Titel:
Therapeutic Implications of UVB Irradiation in Cancer by Enhancing Anti-Tumor Immunity <superscript>†</superscript> .
Autor/in / Beteiligte Person: Hafeez, BB ; Alvarado, EW ; Kim, DJ
Link:
Zeitschrift: Photochemistry and photobiology, Jg. 99 (2023-03-01), Heft 2, S. 874-877
Veröffentlichung: <2004->: Lawrence KS : American Society for Photobiology ; <i>Original Publication</i>: Augusta, GA: American Society for Photobiology, <1996->, 2023
Medientyp: academicJournal
ISSN: 1751-1097 (electronic)
DOI: 10.1111/php.13729
Schlagwort:
  • Humans
  • CD8-Positive T-Lymphocytes pathology
  • Ultraviolet Rays
  • Transcription Factors
  • Skin Neoplasms pathology
  • Melanoma
  • Colorectal Neoplasms radiotherapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Photochem Photobiol] 2023 Mar; Vol. 99 (2), pp. 874-877. <i>Date of Electronic Publication: </i>2022 Oct 06.
  • MeSH Terms: Skin Neoplasms* / pathology ; Melanoma* ; Colorectal Neoplasms* / radiotherapy ; Humans ; CD8-Positive T-Lymphocytes / pathology ; Ultraviolet Rays ; Transcription Factors
  • References: Lin, M. J., J. Svensson-Arvelund, G. S. Lubitz, A. Marabelle, I. Melero, B. D. Brown and J. D. Brody (2022) Cancer vaccines: The next immunotherapy frontier. Nature cancer 3, 911-926. ; Gabrilovich, D. I., S. Ostrand-Rosenberg and V. Bronte (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. ; Park, G., Y. H. Cui, S. Yang, M. Sun, E. Wilkinson, H. Li, Y. B. Zhang, J. Chen, M. Bissonnette, W. Lin and Y. Y. He (2022) Moderate low UVB irradiation modulates tumor-associated macrophages and dendritic cells and promotes antitumor immunity in tumor-bearing mice. Photochem. Photobiol. https://doi.org/10.1111/php.13684 (in press). ; Slominski, A. and J. Pawelek (1998) Animals under the sun: Effects of ultraviolet radiation on mammalian skin. Clin. Dermatol. 16, 503-515. ; Didona, D., G. Paolino, U. Bottoni and C. Cantisani (2018) Non melanoma skin cancer pathogenesis overview. Biomedicines 6, 6. ; Yarosh, D. B. (2004) DNA repair, immunosuppression, and skin cancer. Cutis 74, 10-13. ; Strickland, F. M., Y. Sun, A. Darvill, S. Eberhard, M. Pauly and P. Albersheim (2001) Preservation of the delayed-type hypersensitivity response to alloantigen by xyloglucans or oligogalacturonide does not correlate with the capacity to reject ultraviolet-induced skin tumors in mice. J. Invest. Dermatol. 116, 62-68. ; Fell, G. L., K. C. Robinson, J. Mao, C. J. Woolf and D. E. Fisher (2014) Skin β-endorphin mediates addiction to UV light. Cell 157, 1527-1534. ; Rebel, H., C. D. der Spek, D. Salvatori, J. P. van Leeuwen, E. C. Robanus-Maandag and F. R. de Gruijl (2015) UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. Int. J. Cancer 136, 271-277. ; Moozhipurath, R. K., L. Kraft and B. Skiera (2020) Evidence of protective role of ultraviolet-B (UVB) radiation in reducing COVID-19 deaths. Sci. Rep. 10, 17705. ; Dunn, G. P., A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber (2002) Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 3, 991-998. ; Wu, W., Y. Liu, S. Zeng, Y. Han and H. Shen (2021) Intratumor heterogeneity: The hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J. Hematol. Oncol. 14, 160. ; van der Leun, A. M., D. S. Thommen and T. N. Schumacher (2020) CD8(+) T cell states in human cancer: Insights from single-cell analysis. Nat. Rev. Cancer 20, 218-232. ; Yan, Y., L. Huang, Y. Liu, M. Yi, Q. Chu, D. Jiao and K. Wu (2022) Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: Implications for antitumor immunity. J. Hematol. Oncol. 15, 104. ; Ramesh, A., S. Kumar, D. Nandi and A. Kulkarni (2019) CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Advan. Mat. 31, e1904364. ; Song, Y., L. Bugada, R. Li, H. Hu, L. Zhang, C. Li, H. Yuan, K. K. Rajanayake, N. A. Truchan, F. Wen, W. Gao and D. Sun (2022) Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci. Transl. Med. 14, eabl3649. ; Liu, L., M. A. Lim, S. N. Jung, C. Oh, H. R. Won, Y. L. Jin, Y. Piao, H. J. Kim, J. W. Chang and B. S. Koo (2021) The effect of curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine 92, 153758. ; Beissert, S. and T. Schwarz (1999) Mechanisms involved in ultraviolet light-induced immunosuppression. J Investig. Dermatol. Symp. Proceed. 4, 61-64. ; Mantovani, A., F. Marchesi, A. Malesci, L. Laghi and P. Allavena (2017) Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399-416. ; Wculek, S. K., F. J. Cueto, A. M. Mujal, I. Melero, M. F. Krummel and D. Sancho (2020) Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7-24. ; Wang, X., J. Zhang, B. Hu and F. Qian (2022) High expression of CSF-1R predicts poor prognosis and CSF-1R(high) tumor-associated macrophages inhibit anti-tumor immunity in colon adenocarcinoma. Front. Oncol. 12, 850767. ; Candido, J. B., J. P. Morton, P. Bailey, A. D. Campbell, S. A. Karim, T. Jamieson, L. Lapienyte, A. Gopinathan, W. Clark, E. J. McGhee, J. Wang, M. Escorcio-Correia, R. Zollinger, R. Roshani, L. Drew, L. Rishi, R. Arkell, T. R. J. Evans, C. Nixon, D. I. Jodrell, R. W. Wilkinson, A. V. Biankin, S. T. Barry, F. R. Balkwill and O. J. Sansom (2018) CSF1R(+) macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23, 1448-1460. ; Xiao, M., J. He, L. Yin, X. Chen, X. Zu and Y. Shen (2021) Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front. Immunol. 12, 799428. ; Neesse, A., P. Michl, K. K. Frese, C. Feig, N. Cook, M. A. Jacobetz, M. P. Lolkema, M. Buchholz, K. P. Olive, T. M. Gress and D. A. Tuveson (2011) Stromal biology and therapy in pancreatic cancer. Gut 60, 861-868. ; Beatty, G. L., E. G. Chiorean, M. P. Fishman, B. Saboury, U. R. Teitelbaum, W. Sun, R. D. Huhn, W. Song, D. Li, L. L. Sharp, D. A. Torigian, P. J. O'Dwyer and R. H. Vonderheide (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science (New York, N.Y.) 331, 1612-1616. ; Bayne, L. J., G. L. Beatty, N. Jhala, C. E. Clark, A. D. Rhim, B. Z. Stanger and R. H. Vonderheide (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822-835. ; Ye, H., Q. Zhou, S. Zheng, G. Li, Q. Lin, L. Wei, Z. Fu, B. Zhang, Y. Liu, Z. Li and R. Chen (2018) Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 9, 453. ; Mehraj, U., H. Qayoom and M. A. Mir (2021) Prognostic significance and targeting tumor-associated macrophages in cancer: New insights and future perspectives. Breast cancer (Tokyo, Japan) 28, 539-555. ; Xue, T., K. Yan, Y. Cai, J. Sun, Z. Chen, X. Chen and W. Wu (2021) Prognostic significance of CD163+ tumor-associated macrophages in colorectal cancer. World J. Surg. Oncol. 19, 186. ; Zhang, Q. W., L. Liu, C. Y. Gong, H. S. Shi, Y. H. Zeng, X. Z. Wang, Y. W. Zhao and Y. Q. Wei (2012) Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PloS one 7, e50946. ; Joyce, J. A. and J. W. Pollard (2009) Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239-252. ; Eisel, D., K. Das, E. Dickes, R. König, W. Osen and S. B. Eichmüller (2019) Cognate interaction with CD4(+) T cells instructs tumor-associated macrophages to acquire M1-like phenotype. Front. Immunol. 10, 219. ; Panni, R. Z., J. M. Herndon, C. Zuo, S. Hegde, G. D. Hogg, B. L. Knolhoff, M. A. Breden, X. Li, V. E. Krisnawan, S. Q. Khan, J. K. Schwarz, B. E. Rogers, R. C. Fields, W. G. Hawkins, V. Gupta and D. G. DeNardo (2019) Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl. Med. 11, eaau9240. ; Ngambenjawong, C., H. H. Gustafson and S. H. Pun (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 114, 206-221. ; Mantovani, A., S. Sozzani, M. Locati, P. Allavena and A. Sica (2002) Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549-555. ; Casares, N., M. O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux, N. Chaput, E. Schmitt, A. Hamai, S. Hervas-Stubbs, M. Obeid, F. Coutant, D. Métivier, E. Pichard, P. Aucouturier, G. Pierron, C. Garrido, L. Zitvogel and G. Kroemer (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691-1701. ; Galluzzi, L., A. Buqué, O. Kepp, L. Zitvogel and G. Kroemer (2017) Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97-111. ; Merad, M., P. Sathe, J. Helft, J. Miller and A. Mortha (2013) The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563-604. ; Mildner, A. and S. Jung (2014) Development and function of dendritic cell subsets. Immunity 40, 642-656. ; Mashayekhi, M., M. M. Sandau, I. R. Dunay, E. M. Frickel, A. Khan, R. S. Goldszmid, A. Sher, H. L. Ploegh, T. L. Murphy, L. D. Sibley and K. M. Murphy (2011) CD8α(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by toxoplasma gondii tachyzoites. Immunity 35, 249-259.
  • Substance Nomenclature: 0 (Transcription Factors)
  • Entry Date(s): Date Created: 20220924 Date Completed: 20230331 Latest Revision: 20230502
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -