Zum Hauptinhalt springen

Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors.

Brasiliense, V ; Park, JE ; et al.
In: Scientific reports, Jg. 12 (2022-09-23), Heft 1, S. 15929
Online academicJournal

Titel:
Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors.
Autor/in / Beteiligte Person: Brasiliense, V ; Park, JE ; Berns, EJ ; Van Duyne, RP ; Mrksich, M
Link:
Zeitschrift: Scientific reports, Jg. 12 (2022-09-23), Heft 1, S. 15929
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2022
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-022-19942-7
Schlagwort:
  • Adsorption
  • Nanostructures chemistry
  • Spectrum Analysis, Raman methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Sci Rep] 2022 Sep 23; Vol. 12 (1), pp. 15929. <i>Date of Electronic Publication: </i>2022 Sep 23.
  • MeSH Terms: Nanostructures* / chemistry ; Spectrum Analysis, Raman* / methods ; Adsorption
  • References: Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007). (PMID: 1706728110.1146/annurev.physchem.58.032806.104607) ; Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008). (PMID: 1849785110.1038/nmat2162) ; Sharma, B. et al. High-performance SERS substrates: Advances and challenges. MRS Bull. 38, 615–624 (2013). (PMID: 10.1557/mrs.2013.161) ; Lyandres, O. et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem. 77, 6134–6139 (2005). (PMID: 1619407010.1021/ac051357u) ; Hu, Y. et al. Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11, 5558–5566 (2017). (PMID: 2854921710.1021/acsnano.7b00905) ; Vander Ende, E. et al. Physicochemical trapping of neurotransmitters in polymer-mediated gold nanoparticle aggregates for surface-enhanced raman spectroscopy. Anal. Chem. 91, 9554–9562 (2019). (PMID: 3128318910.1021/acs.analchem.9b00773) ; Wang, P. et al. Label-free SERS selective detection of dopamine and serotonin using Graphene-Au nanopyramid heterostructure. Anal. Chem. 87, 10255–10261 (2015). (PMID: 2638254910.1021/acs.analchem.5b01560) ; Hernandez-Arteaga, A. et al. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res. 10, 3662–3670 (2017). (PMID: 10.1007/s12274-017-1576-5) ; Hanif, S. et al. Nanopipette-based SERS aptasensor for subcellular localization of cancer biomarker in single cells. Anal. Chem. 89, 9911–9917 (2017). (PMID: 2882547310.1021/acs.analchem.7b02147) ; Wang, L. et al. Electrochemistry-regulated recyclable SERS sensor for sensitive and selective detection of tyrosinase activity. Anal. Chem. 91, 6507–6513 (2019). (PMID: 3091693010.1021/acs.analchem.8b05341) ; Mohan, A. M. V., Windmiller, J. R., Mishra, R. K. & Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017). (PMID: 2808875010.1016/j.bios.2017.01.016) ; Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019). (PMID: 3017742210.1016/j.bios.2018.08.010) ; Miller, P. R. et al. Hollow microneedle-based sensor for multiplexed transdermal electrochemical sensing. J. Vis. Exp. e4067 (2012). ; Barrett, C., Dawson, K., O’Mahony, C. & O’Riordan, A. Development of low cost rapid fabrication of sharp polymer microneedles for in vivo glucose biosensing applications. ECS J. Solid State Sci. Technol. 4, S3053–S3058 (2015). (PMID: 10.1149/2.0141510jss) ; Kolluru, C. et al. Plasmonic paper microneedle patch for on-patch detection of molecules in dermal interstitial fluid. ACS Sens. 4, 1569–1576 (2019). (PMID: 31070358667959910.1021/acssensors.9b00258) ; Kashaninejad, N. et al. Microneedle arrays for sampling and sensing skin interstitial fluid. Chemosensors 9, 83 (2021). (PMID: 10.3390/chemosensors9040083) ; Jina, A. et al. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8, 483–487 (2014). (PMID: 24876610445543810.1177/1932296814526191) ; Ribet, F., Stemme, G. & Roxhed, N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20, 1–10 (2018). (PMID: 10.1007/s10544-018-0349-6) ; Bollella, P., Sharma, S., Cass, A. E. G., Tasca, F. & Antiochia, R. Minimally invasive glucose monitoring using a highly porous gold microneedles-based biosensor: Characterization and application in artificial interstitial fluid. Catalysts 9, 580 (2019). (PMID: 10.3390/catal9070580) ; Sharma, S., Takagi, E., Cass, T., Tsugawa, W. & Sode, K. Minimally invasive microneedle array electrodes employing direct electron transfer type glucose dehydrogenase for the development of continuous glucose monitoring sensors. Procedia Technol. 27, 208–209 (2017). (PMID: 10.1016/j.protcy.2017.04.087) ; Yuen, C. & Liu, Q. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: A skin-mimicking phantom study. J. Biomed. Opt. 20, 61102 (2015). (PMID: 2570033210.1117/1.JBO.20.6.061102) ; Yuen, C. & Liu, Q. Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: Silver coated microneedle based SERS probe. J. Biophotonics 7, 683–689 (2014). (PMID: 2366682510.1002/jbio.201300006) ; Ju, J. et al. Surface enhanced raman spectroscopy based biosensor with a microneedle array for minimally invasive in vivo glucose measurements. ACS Sens. 5, 1777–1785 (2020). (PMID: 3242697810.1021/acssensors.0c00444) ; Park, J. E. et al. Plasmonic microneedle arrays for in situ sensing with surface-enhanced raman spectroscopy (SERS). Nano Lett. 19, 6862–6868 (2019). (PMID: 31545611739860910.1021/acs.nanolett.9b02070) ; Masango, S. S. et al. High-resolution distance dependence study of surface-enhanced raman scattering enabled by atomic layer deposition. Nano Lett. 16, 4251–4259 (2016). (PMID: 2724310810.1021/acs.nanolett.6b01276) ; Xie, L. F. et al. Key role of direct adsorption on SERS sensitivity: Synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced raman spectroscopy substrate. J. Phys. Chem. Lett. 11, 1022–1029 (2020). (PMID: 3193156310.1021/acs.jpclett.9b03724) ; Perez-Jimenez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020). (PMID: 34122914815923710.1039/D0SC00809E) ; Xi, W., Shrestha, B. K. & Haes, A. J. Promoting intra- and intermolecular interactions in surface-enhanced raman scattering. Anal. Chem. 90, 128–143 (2018). (PMID: 2905604210.1021/acs.analchem.7b04225) ; Wang, G. F. et al. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced raman scattering. Anal. Chem. 83, 2554–2561 (2011). (PMID: 21391573331510910.1021/ac102829b) ; Zhang, H., Harpster, M. H., Park, H. J., Johnson, P. A. & Wilson, W. C. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal. Chem. 83, 254–260 (2011). (PMID: 2112169310.1021/ac1023843) ; Sun, F., Galvan, D. D., Jain, P. & Yu, Q. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy. Chem. Commun. (Camb.) 53, 4550–4561 (2017). (PMID: 10.1039/C7CC01577A) ; Brasiliense, V., Park, J. E., Chen, Z., Van Duyne, R. P. & Schatz, G. C. Nanopipette-based electrochemical SERS platforms: Using electrodeposition to produce versatile and adaptable plasmonic substrates. J. Raman Spectrosc. 52, 339–347 (2021). (PMID: 10.1002/jrs.5974) ; Li, X. T. et al. Reusable dual-functional SERS sensor based on gold nanoflowers-modified red phosphorus nanoplates for ultrasensitive immunoassay and degradation of CA19-9. Biosens. Bioelectron. 207, 114148 (2022). (PMID: 3528694510.1016/j.bios.2022.114148) ; Ma, Y. et al. Quantitative and recyclable surface-enhanced raman spectroscopy immunoassay based on Fe3O4@TiO2@Ag core-shell nanoparticles and Au nanowire/polydimethylsiloxane substrates. ACS Appl. Nano Mater. 3, 4610–4622 (2020). (PMID: 10.1021/acsanm.0c00652) ; Zaleski, S. et al. Identification and quantification of intravenous therapy drugs using normal raman spectroscopy and electrochemical surface-enhanced raman spectroscopy. Anal. Chem. 89, 2497–2504 (2017). (PMID: 2819295110.1021/acs.analchem.6b04636) ; Cortes, E. et al. Electrochemical modulation for signal discrimination in surface enhanced Raman scattering (SERS). Anal. Chem. 82, 6919–6925 (2010). (PMID: 2070438110.1021/ac101152t) ; Zong, C., Chen, C. J., Zhang, M., Wu, D. Y. & Ren, B. Transient electrochemical surface-enhanced raman spectroscopy: A millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 137, 11768–11774 (2015). (PMID: 2632524410.1021/jacs.5b07197) ; Zhao, L., Blackburn, J. & Brosseau, C. L. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate. Anal. Chem. 87, 441–447 (2015). (PMID: 2548314610.1021/ac503967s) ; Wu, D. Y., Li, J. F., Ren, B. & Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008). (PMID: 1844368710.1039/b707872m) ; Lambert, D. K. Vibrational Stark effect of adsorbates at electrochemical interfaces. Electrochim. Acta 41, 623–630 (1996). (PMID: 10.1016/0013-4686(95)00349-5) ; Rodriguez, R. D. et al. Chemical enhancement vs molecule-substrate geometry in plasmon-enhanced spectroscopy. ACS Photonics 8, 2243–2255 (2021). (PMID: 10.1021/acsphotonics.1c00001) ; Chan, M. Y., Leng, W. & Vikesland, P. J. Surface-enhanced raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19, 24–28 (2018). (PMID: 2906811310.1002/cphc.201700798) ; Li, C. Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015). (PMID: 2605293010.1021/jacs.5b04670) ; Pavel, I., Szeghalmi, A., Moigno, D., Cinta, S. & Kiefer, W. Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. Biopolymers 72, 25–37 (2003). (PMID: 1240008910.1002/bip.10248) ; Hernandez, S., Perales-Rondon, J. V., Heras, A. & Colina, A. Enhancement factors in electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 380, 138223 (2021). (PMID: 10.1016/j.electacta.2021.138223) ; Perales-Rondon, J. V. et al. Electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 282, 377–383 (2018). (PMID: 10.1016/j.electacta.2018.06.079) ; Hernandez, S., Perales-Rondon, J. V., Heras, A. & Colina, A. Electrochemical SERS and SOERS in a single experiment: A new methodology for quantitative analysis. Electrochim. Acta 334, 135561 (2020). (PMID: 10.1016/j.electacta.2019.135561) ; Dal Poggetto, G., Castanar, L., Adams, R. W., Morris, G. A. & Nilsson, M. Dissect and divide: Putting NMR spectra of mixtures under the knife. J. Am. Chem. Soc. 141, 5766–5771 (2019). (PMID: 10.1021/jacs.8b13290) ; Jiang, S. et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 6, e17098 (2017). (PMID: 30167216606204810.1038/lsa.2017.98) ; Abou Fadel, M. et al. Extraction of pure spectral signatures and corresponding chemical maps from EPR imaging data sets: identifying defects on a CaF2 surface due to a laser beam exposure. Anal. Chem. 87, 3929–3935 (2015). (PMID: 2573068210.1021/ac504733u) ; Morais, C. L. M. et al. A three-dimensional discriminant analysis approach for hyperspectral images. Analyst 145, 5915–5924 (2020). (PMID: 3268714010.1039/D0AN01328E) ; Faber, N. K. Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Anal. Chem. 71, 557–565 (1999). (PMID: 2166271410.1021/ac980415r) ; Doherty, B. et al. A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 121, 292–305 (2014). (PMID: 2425229510.1016/j.saa.2013.10.069) ; Zong, X., Zhu, R. & Guo, X. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating. Sci. Rep. 5, 16454 (2015). (PMID: 26558325464234010.1038/srep16454) ; Clarke, S. J., Littleford, R. E., Smith, W. E. & Goodacre, R. Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst 130, 1019–1026 (2005). (PMID: 1596552410.1039/b502540k) ; Kiefer, J. & Eisen, K. Unsupervised screening of vibrational spectra by principal component analysis for identifying molecular clusters. ChemPhysChem 19, 795–800 (2018). (PMID: 2940659310.1002/cphc.201701353) ; Moody, A. S., Baghernejad, P. C., Webb, K. R. & Sharma, B. Surface enhanced spatially offset raman spectroscopy detection of neurochemicals through the skull. Anal. Chem. 89, 5689–5693 (2017). (PMID: 10.1021/acs.analchem.7b00985) ; Rullich, C. C. & Kiefer, J. Principal component analysis to enhance enantioselective Raman spectroscopy. Analyst 144, 2080–2086 (2019). (PMID: 3073478410.1039/C8AN01886C) ; Li, Y. et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J. Am. Chem. Soc. 139, 13055–13062 (2017). (PMID: 2884598110.1021/jacs.7b06476) ; de Gala Pablo, J. et al. Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy. Analyst 145, 5878–5888 (2020). (PMID: 10.1039/D0AN01023E) ; Duponchel, L., Elmi-Rayaleh, W., Ruckebusch, C. & Huvenne, J. P. Multivariate curve resolution methods in imaging spectroscopy: Influence of extraction methods and instrumental perturbations. J. Chem. Inf. Comput. Sci. 43, 2057–2067 (2003). (PMID: 1463245810.1021/ci034097v) ; Gao, P. & Weaver, M. J. Metal adsorbate vibrational frequencies as a probe of surface bonding - halides and pseudohalides at gold electrodes. J. Phys. Chem. 90, 4057–4063 (1986). (PMID: 10.1021/j100408a045) ; Kurokawa, Y., Imai, Y. & Tamai, Y. Surface-enhanced Raman scattering observations on bipyridine, phthalimide, phenylethylamine and theobromine by using a fine silver particle-doped cellulose gel film. Analyst 122, 941–944 (1997). (PMID: 10.1039/a702697h) ; Alharbi, O., Xu, Y. & Goodacre, R. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Anal. Bioanal. Chem. 407, 8253–8261 (2015). (PMID: 26345445460450110.1007/s00216-015-9004-8) ; Caffarel-Salvador, E. et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: Potential for use in diagnosis and therapeutic drug monitoring. PLoS ONE 10, e0145644 (2015). (PMID: 26717198469920810.1371/journal.pone.0145644) ; Garza, C. Caffeine for the Sustainment of Mental Task Performance: Formulations for Military Operations Vol. 37 (National Academies Press, 2001).
  • Entry Date(s): Date Created: 20220923 Date Completed: 20220928 Latest Revision: 20221123
  • Update Code: 20240513
  • PubMed Central ID: PMC9508330

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -