Zum Hauptinhalt springen

Molecular mechanisms regulating the pharmacological actions of icariin with special focus on PI3K-AKT and Nrf-2 signaling pathways.

Verma, A ; Aggarwal, K ; et al.
In: Molecular biology reports, Jg. 49 (2022-09-01), Heft 9, S. 9023-9032
Online academicJournal

Titel:
Molecular mechanisms regulating the pharmacological actions of icariin with special focus on PI3K-AKT and Nrf-2 signaling pathways.
Autor/in / Beteiligte Person: Verma, A ; Aggarwal, K ; Agrawal, R ; Pradhan, K ; Goyal, A
Link:
Zeitschrift: Molecular biology reports, Jg. 49 (2022-09-01), Heft 9, S. 9023-9032
Veröffentlichung: Dordrecht, Boston, Reidel., 2022
Medientyp: academicJournal
ISSN: 1573-4978 (electronic)
DOI: 10.1007/s11033-022-07778-3
Schlagwort:
  • Anti-Inflammatory Agents pharmacology
  • Flavonoids pharmacology
  • Flavonoids therapeutic use
  • Phosphatidylinositol 3-Kinases metabolism
  • Signal Transduction
  • Drugs, Chinese Herbal pharmacology
  • Drugs, Chinese Herbal therapeutic use
  • Proto-Oncogene Proteins c-akt metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Mol Biol Rep] 2022 Sep; Vol. 49 (9), pp. 9023-9032. <i>Date of Electronic Publication: </i>2022 Aug 08.
  • MeSH Terms: Drugs, Chinese Herbal* / pharmacology ; Drugs, Chinese Herbal* / therapeutic use ; Proto-Oncogene Proteins c-akt* / metabolism ; Anti-Inflammatory Agents / pharmacology ; Flavonoids / pharmacology ; Flavonoids / therapeutic use ; Phosphatidylinositol 3-Kinases / metabolism ; Signal Transduction
  • References: Chen XJ, Tang ZH, Li XW, Xie CX, Lu JJ, Wang YT (2015) Chemical constituents, quality control, and bioactivity of Epimedii folium (Yinyanghuo). Am J Chin Med 43:783–834. doi: https://doi.org/10.1142/S0192415X15500494. (PMID: 10.1142/S0192415X1550049426243581) ; Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M (2021) Icariin, an up-and-coming bioactive compound against neurological diseases: network pharmacology-based study and literature review. Drug Des Devel Ther 15:3619–3641. doi: https://doi.org/10.2147/DDDT.S310686. (PMID: 10.2147/DDDT.S310686344472438384151) ; Li C, Li Q, Mei Q, Lu T (2015) Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 126:57–68. doi: https://doi.org/10.1016/j.lfs.2015.01.006. (PMID: 10.1016/j.lfs.2015.01.00625634110) ; Singh NK, Garabadu D (2021) Alpha7 nicotinic acetylcholine receptor down regulation impairs mitochondrial function in streptozotocin-induced sporadic Alzheimer’s disease model in rats. Indian J Pharm Educ Res 55:153–163. (PMID: 10.5530/ijper.55.1.17) ; Varshney V, Garabadu D (2021) Naringin exhibits Mas receptor-mediated neuroprotection against amyloid beta-induced cognitive deficits and mitochondrial toxicity in rat brain. Neurotox Res 39:1023–1043. doi: https://doi.org/10.1007/s12640-021-00336-y. (PMID: 10.1007/s12640-021-00336-y33534126) ; Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z (2019) An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 842:20–32. doi: https://doi.org/10.1016/j.ejphar.2018.10.006. (PMID: 10.1016/j.ejphar.2018.10.00630342950) ; Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S (2018) The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 29:535–544. doi: https://doi.org/10.1007/s00198-017-4255-1. (PMID: 10.1007/s00198-017-4255-129110063) ; Zeng Y, Xiong Y, Yang T, Wang Y, Zeng J, Zhou S, Luo Y, Li L (2022) Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms. Biomed Pharmacother 147:112642. doi: https://doi.org/10.1016/j.biopha.2022.112642. (PMID: 10.1016/j.biopha.2022.11264235078094) ; Shen R, Wang JH (2018) The effect of icariin on immunity and its potential application. Am J Clin Exp Immunol 7:50–56. (PMID: 300388466055068) ; Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, Goh BH (2016) Anti-cancer properties of the naturally occurring aphrodisiacs: icariin and its derivatives. Front Pharmacol 7:191. doi: https://doi.org/10.3389/fphar.2016.00191. (PMID: 10.3389/fphar.2016.00191274458244925704) ; Chen WF, Wu L, Du ZR, Chen L, Xu AL, Chen XH, Teng JJ, Wong MS (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99. doi: https://doi.org/10.1016/j.phymed.2016.12.017. (PMID: 10.1016/j.phymed.2016.12.01728190476) ; Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y (2019) PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia. Mol Med 19:783–791. doi: https://doi.org/10.3892/mmr.2018.9713. (PMID: 10.3892/mmr.2018.9713) ; Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B (2019) The relation between PI3K/AKT signalling pathway and cancer. Gene 698:120–128. doi: https://doi.org/10.1016/j.gene.2019.02.076. (PMID: 10.1016/j.gene.2019.02.07630849534) ; Huang X, Liu G, Guo J, Su Z (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14:1483–1496. doi: https://doi.org/10.7150/ijbs.27173. (PMID: 10.7150/ijbs.27173302630006158718) ; Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35:775–795. doi: https://doi.org/10.1007/s12640-019-0003-y. (PMID: 10.1007/s12640-019-0003-y30707354) ; Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40:e00099–e00020. doi: https://doi.org/10.1128/MCB.00099-20. (PMID: 10.1128/MCB.00099-20322843487296212) ; de la Rojo M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43. doi: https://doi.org/10.1016/j.ccell.2018.03.022. (PMID: 10.1016/j.ccell.2018.03.022) ; Saha S, Buttari B, Panieri E, Profumo E, Saso L An overview of Nrf2 signaling pathway and its role in inflammation.Molecules25:5474. doi: https://doi.org/10.3390/molecules25225474. ; Guo Z, Mo Z (2020) Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 14:869–883. doi: https://doi.org/10.1002/term.3053. (PMID: 10.1002/term.305332336035) ; Varshney V, Garabadu D (2021) Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol Biol Rep 48:4319–4331. doi: https://doi.org/10.1007/s11033-021-06447-1. (PMID: 10.1007/s11033-021-06447-134075536) ; Singh NK, Garabadu D Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents.Neurotox Res39:1859–1879. doi: https://doi.org/10.1007/s12640-021-00410-5. ; Wang Z, Yang L, Xia Y, Guo C, Kong L (2015) Icariin enhances cytotoxicity of doxorubicin in human multidrug-resistant osteosarcoma cells by inhibition of ABCB1 and down-regulation of the PI3K/Akt pathway. Biol Pharm Bull 38:277–284. doi: https://doi.org/10.1248/bpb.b14-00663. (PMID: 10.1248/bpb.b14-0066325747987) ; Gu ZF, Zhang ZT, Wang JY, Xu BB (2017) Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ Toxicol Pharmacol 54:7–13. doi: https://doi.org/10.1016/j.etap.2017.06.004. (PMID: 10.1016/j.etap.2017.06.00428667862) ; Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai G (2019) Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci 239:116879. doi: https://doi.org/10.1016/j.lfs.2019.116879. (PMID: 10.1016/j.lfs.2019.11687931682849) ; Fang L, Xu W, Kong D (2019) Icariin inhibits cell proliferation, migration and invasion by down-regulation of microRNA-625-3p in thyroid cancer cells. Biomed Pharmacother 109:2456–2463. doi: https://doi.org/10.1016/j.biopha.2018.04.012. (PMID: 10.1016/j.biopha.2018.04.01230551506) ; Sun L, Zhang J (2021) Icariin inhibits oral squamous cell carcinoma cell proliferation and induces apoptosis via inhibiting the NF-κB and PI3K/AKT pathways. Exp Ther Med 22:942. doi: https://doi.org/10.3892/etm.2021.10374. (PMID: 10.3892/etm.2021.10374343062068281471) ; Gao J, Fu Y, Song L, Long M, Zhang Y, Qin J, Liu H (2022) Proapoptotic effect of icariin on human ovarian cancer cells via the NF-κB/PI3K-AKT signaling pathway: a network pharmacology-directed experimental investigation. Am J Chin Med 50:589–619. doi: https://doi.org/10.1142/S0192415X22500239. (PMID: 10.1142/S0192415X2250023935114909) ; Wang S, Gao J, Li Q, Ming W, Fu Y, Song L, Qin J (2020) Study on the regulatory mechanism and experimental verification of icariin for the treatment of ovarian cancer based on network pharmacology. J Ethnopharmacol 262:113189. doi: https://doi.org/10.1016/j.jep.2020.113189. (PMID: 10.1016/j.jep.2020.11318932736044) ; Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J, Ma HP, Xian CJ, Chen KM (2014) Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone 66:189–198. doi: https://doi.org/10.1016/j.bone.2014.06.016. (PMID: 10.1016/j.bone.2014.06.01624956021) ; Yu T, Xiong Y, Luu S, You X, Li B, Xia J, Zhu H, Zhao Y, Zhou H, Yu G, Yang Y (2020) The shared KEGG pathways between icariin-targeted genes and osteoporosis. Aging 12:8191–8201. doi: https://doi.org/10.18632/aging.103133. (PMID: 10.18632/aging.103133323804777244047) ; Kessler T, Vilne B, Schunkert H (2016) The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 8:688–701. doi: https://doi.org/10.15252/emmm.201506174. (PMID: 10.15252/emmm.201506174271891684931285) ; Ke Z, Liu J, Xu P, Gao A, Wang L, Ji L (2015) The cardioprotective effect of icariin on ischemia-reperfusion injury in isolated rat heart: potential involvement of the PI3K-Akt signaling pathway. Cardiovasc Ther 33:134–140. doi: https://doi.org/10.1111/1755-5922.12121. (PMID: 10.1111/1755-5922.1212125847837) ; Zhai M, He L, Ju X, Shao L, Li G, Zhang Y, Liu Y, Zhao H (2015) Icariin acts as a potential agent for preventing cardiac ischemia/reperfusion injury. Cell Biochem Biophys 72:589–597. doi: https://doi.org/10.1007/s12013-014-0506-3. (PMID: 10.1007/s12013-014-0506-325663532) ; Chung BH, Kim JD, Kim CK, Kim JH, Won MH, Lee HS, Dong MS, Ha KS, Kwon YG, Kim YM (2008) Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochem Biophys Res Commun 376:404–408. doi: https://doi.org/10.1016/j.bbrc.2008.09.001. (PMID: 10.1016/j.bbrc.2008.09.00118789310) ; Xiao-Hong D, Chang-Qin X, Jian-Hua H, Wen-Jiang Z, Bing S (2013) Icariin delays homocysteine-induced endothelial cellular senescence involving activation of the PI3K/AKT-eNOS signaling pathway. Pharm Biol 51:433–440. doi: https://doi.org/10.3109/13880209.2012.738332. (PMID: 10.3109/13880209.2012.73833223336586) ; Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS, Li XM (2019) PI3K-AKT signaling activation and icariin: the potential effects on the perimenopausal depression-like rat model. Molecules 24:3700. doi: https://doi.org/10.3390/molecules24203700. (PMID: 10.3390/molecules242037006832648) ; Zeng NX, Li HZ, Wang HZ, Liu KG, Gong XY, Luo WL, Yan C, Wu LL (2022) Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression. Neural Regen Res 17:632–642. doi: https://doi.org/10.4103/1673-5374.320993. (PMID: 10.4103/1673-5374.32099334380904) ; Li H, Zhang X, Qi X, Zhu X, Cheng L (2019) Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway. Int J Biol Sci 15:277–286. doi: https://doi.org/10.7150/ijbs.30348. (PMID: 10.7150/ijbs.30348307458206367543) ; He J, Lv J, Li W, Li S, Zhang Y, Wei H, Pan W, Gao Y (2017) Icariin protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Int J Clin Exp Med 10:2367–2373. ; Zheng Y, Zhu G, He J, Wang G, Li D, Zhang F (2019) Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 73:304–311. doi: https://doi.org/10.1016/j.intimp.2019.05.033. (PMID: 10.1016/j.intimp.2019.05.03331128530) ; Zhu L, Li D, Chen C, Wang G, Shi J, Zhang F (2019) Activation of Nrf2 signaling by Icariin protects against 6-OHDA-induced neurotoxicity. Biotechnol Appl Biochem 66:465–471. doi: https://doi.org/10.1002/bab.1743. (PMID: 10.1002/bab.174330892727) ; Zhang B, Wang G, He J, Yang Q, Li D, Li J, Zhang F (2019) Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J Neuroinflammation 16:92. doi: https://doi.org/10.1186/s12974-019-1472-x. (PMID: 10.1186/s12974-019-1472-x310104226477740) ; Liu QW, Yang ZH, Jiang J, Jiang R (2021) Icariin modulates eNOS activity via effect on post-translational protein-protein interactions to improve erectile function of spontaneously hypertensive rats. Andrology 9:342–351. doi: https://doi.org/10.1111/andr.12875. (PMID: 10.1111/andr.1287533507631) ; Wang K, Zheng X, Pan Z, Yao W, Gao X, Wang X, Ding X (2020) Icariin prevents extracellular matrix accumulation and ameliorates experimental diabetic kidney disease by inhibiting oxidative stress via GPER mediated p62-dependent Keap1 degradation and Nrf2 activation. Front Cell Dev Biol 8:559. doi: https://doi.org/10.3389/fcell.2020.00559. (PMID: 10.3389/fcell.2020.00559327662407379398) ; Hua W, Li S, Luo R, Wu X, Zhang Y, Liao Z, Song Y, Wang K, Zhao K, Yang S, Yang C (2020) Icariin protects human nucleus pulposus cells from hydrogen peroxide-induced mitochondria-mediated apoptosis by activating nuclear factor erythroid 2-related factor 2. Biochim Biophys Acta Mol Basis Dis 1866:165575. doi: https://doi.org/10.1016/j.bbadis.2019.165575. (PMID: 10.1016/j.bbadis.2019.16557531666206) ; Zhang T, Qiu F (2020) Icariin protects mouse insulinoma Min6 cell function by activating the PI3K/AKT pathway. Med Sci Monit 26:e924453. doi: https://doi.org/10.12659/MSM.924453. (PMID: 10.12659/MSM.924453328857957491232) ; Zhou YD, Hou JG, Yang G, Jiang S, Chen C, Wang Z, Liu YY, Ren S, Li W (2019) Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed Pharmacother 109:2309–2317. doi: https://doi.org/10.1016/j.biopha.2018.11.108. (PMID: 10.1016/j.biopha.2018.11.10830551489) ; Deng X, Wu W, Liang H, Huang D, Jing D, Zheng D, Shao Z (2017) Icariin prevents IL-1β-induced apoptosis in human nucleus pulposus via the PI3K/AKT Pathway. Evid Based Complement Alternat Med 2017:2198323. doi: https://doi.org/10.1155/2017/2198323. (PMID: 10.1155/2017/2198323292596415702406) ; Zhang D, Wang Z, Sheng C, Peng W, Hui S, Gong W, Chen S (2015) Icariin prevents amyloid beta-induced apoptosis via the PI3K/Akt pathway in PC-12 cells. Evid Based Complement Alternat Med 2015:235265. doi: https://doi.org/10.1155/2015/235265. ; Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao YX, Dong JC (2010) Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur J Pharmacol 642:146–153. doi: https://doi.org/10.1016/j.ejphar.2010.05.012. (PMID: 10.1016/j.ejphar.2010.05.01220519138) ; Deng X, Chen S, Zheng D, Shao Z, Liang H, Hu H (2017) Icariin prevents H 2 O 2 -induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus intervertebral disc cells. Evid Based Complement Alternat Med. 2017:2694261. doi: https://doi.org/10.1155/2017/2694261. ; Meng X, Pei H, Lan C (2015) Icariin exerts protective effect against myocardial ischemia/reperfusion injury in rats. Cell Biochem Biophys 73:229–235. doi: https://doi.org/10.1007/s12013-015-0669-6. (PMID: 10.1007/s12013-015-0669-625724443) ; Wang X, Liu C, Xu Y, Chen P, Shen Y, Xu Y, Zhao Y, Chen W, Zhang X, Ouyang Y, Wang Y, Xie C, Zhou M, Liu C (2017) Combination of mesenchymal stem cell injection with icariin for the treatment of diabetes-associated erectile dysfunction. PLoS ONE 12:e0174145. doi: https://doi.org/10.1371/journal.pone.0174145. (PMID: 10.1371/journal.pone.0174145283508425369760) ; Zhang Y, Ma X, Li X, Zhang T, Qin M, Ren L (2018) Effects of icariin on atherosclerosis and predicted function regulatory network in ApoE deficient mice. Biomed Res Int 2018:9424186. doi: https://doi.org/10.1155/2018/9424186. (PMID: 10.1155/2018/9424186305334436247691) ; Zeng KW, Ko H, Yang HO, Wang XM (2010) Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59:542–550. doi: https://doi.org/10.1016/j.neuropharm.2010.07.020. (PMID: 10.1016/j.neuropharm.2010.07.02020708632)
  • Contributed Indexing: Keywords: Epimedii herba; Icariin; Nrf-2; PI3K-AKT; Signaling pathways
  • Substance Nomenclature: 0 (Anti-Inflammatory Agents) ; 0 (Drugs, Chinese Herbal) ; 0 (Flavonoids) ; EC 2.7.11.1 (Proto-Oncogene Proteins c-akt) ; VNM47R2QSQ (icariin)
  • Entry Date(s): Date Created: 20220808 Date Completed: 20220913 Latest Revision: 20220913
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -