Zum Hauptinhalt springen

Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease.

Khezri, MR ; Ghasemnejad-Berenji, M
In: Neurochemical research, Jg. 47 (2022-10-01), Heft 10, S. 2954-2962
Online academicJournal

Titel:
Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease.
Autor/in / Beteiligte Person: Khezri, MR ; Ghasemnejad-Berenji, M
Link:
Zeitschrift: Neurochemical research, Jg. 47 (2022-10-01), Heft 10, S. 2954-2962
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press, 2022
Medientyp: academicJournal
ISSN: 1573-6903 (electronic)
DOI: 10.1007/s11064-022-03667-0
Schlagwort:
  • Flavonoids
  • Humans
  • Alzheimer Disease drug therapy
  • Neurodegenerative Diseases drug therapy
  • Neuroprotective Agents pharmacology
  • Neuroprotective Agents therapeutic use
  • Parkinson Disease drug therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Neurochem Res] 2022 Oct; Vol. 47 (10), pp. 2954-2962. <i>Date of Electronic Publication: </i>2022 Jul 08.
  • MeSH Terms: Alzheimer Disease* / drug therapy ; Neurodegenerative Diseases* / drug therapy ; Neuroprotective Agents* / pharmacology ; Neuroprotective Agents* / therapeutic use ; Parkinson Disease* / drug therapy ; Flavonoids ; Humans
  • References: Tang W, Eisenbrand G (2011) Handbook of Chinese medicinal plants. John Wiley, Hoboken. ; Ding C (1990) Determination of icarim in luohan jindan oral liquid by thin-layer chromatography. J Chin Materia Med 15(10):604–606. ; Chen Z et al (2020) Detrimental effect of sitagliptin induced autophagy on multiterritory perforator flap survival. Front Pharmacol 11:951. (PMID: 32670067733288110.3389/fphar.2020.00951) ; Munir N et al (2020) Therapeutic response of Epimedium gandiflorum’s different doses to restore the antioxidant potential and reproductive hormones in male albino rats. Dose Response 18(3):1559325820959563. (PMID: 32973420749326110.1177/1559325820959563) ; Chen Y et al (2008) Intestinal absorption mechanisms of prenylated flavonoids present in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo). Pharm Res 25(9):2190–2199. (PMID: 18459036257497910.1007/s11095-008-9602-7) ; Zhang Y et al (2012) Changes in the intestinal absorption mechanism of icariin in the nanocavities of cyclodextrins. Int J Nanomed 7:4239. ; Zhao H et al (2010) Liquid chromatography–tandem mass spectrometry analysis of metabolites in rats after administration of prenylflavonoids from Epimediums. J Chromatogr B 878(15–16):1113–1124. (PMID: 10.1016/j.jchromb.2010.03.023) ; Chen Y et al (2011) Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules 16(2):1336–1348. (PMID: 21285919625964610.3390/molecules16021336) ; Qian Q et al (2012) Metabolite profiles of icariin in rat plasma by ultra-fast liquid chromatography coupled to triple-quadrupole/time-of-flight mass spectrometry. J Pharm Biomed Anal 66:392–398. (PMID: 2252203710.1016/j.jpba.2012.03.053) ; Lu D-S et al (2018) Combination treatment of Icariin and L-DOPA against 6-OHDA-Lesioned dopamine neurotoxicity. Front Mol Neurosci 11:155. (PMID: 29867347596419510.3389/fnmol.2018.00155) ; Yang W et al (2012) Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J Pharm Pharmacol 64(2):190–198. (PMID: 2222109410.1111/j.2042-7158.2011.01388.x) ; Wang M, Rong Y, Luo L (2021) Neuroprotective effects of icariin in neonatal hypoxia-ischemic brain damage via its anti-apoptotic property. Child’s Nerv Syst 37(1):39–46. (PMID: 10.1007/s00381-020-04690-8) ; Xu S et al (2017) Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. BioMed Res Int 2017:4684962. (PMID: 292599825702950) ; Erkkinen MG, Kim M-O, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4):a033118. (PMID: 28716886588017110.1101/cshperspect.a033118) ; Khezri MR et al (2022) The role of ERK1/2 pathway in the pathophysiology of alzheimer’s disease: an overview and update on new developments. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01191-x. (PMID: 10.1007/s10571-022-01191-x35038057) ; Khezri MR et al (2022) Metformin in alzheimer’s disease: an overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 197:114945. (PMID: 3513438510.1016/j.bcp.2022.114945) ; Haass C, Willem M (2019) Secreted APP modulates synaptic activity: a novel target for therapeutic intervention? Neuron 101(4):557–559. (PMID: 3079053710.1016/j.neuron.2019.01.058) ; Pedrini S et al (2005) Modulation of statin-activated shedding of alzheimer APP ectodomain by ROCK. PLoS Med 2(1):e18. (PMID: 1564778154346310.1371/journal.pmed.0020018) ; Jin F et al (2014) Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol 17(6):871–881. (PMID: 2451308310.1017/S1461145713001533) ; Chen YJ et al (2016) Neuroprotective effects of icariin on brain metabolism, mitochondrial functions, and cognition in triple-transgenic Alzheimer’s disease mice. CNS Neurosci Therap 22:63–73. (PMID: 10.1111/cns.12473) ; Zhang L et al (2014) Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int J Biol Sci 10(2):181. (PMID: 24550686392713010.7150/ijbs.6232) ; Nie J et al (2010) Icariin inhibits beta-amyloid peptide segment 25–35 induced expression of β-secretase in rat hippocampus. Eur J Pharmacol 626(2–3):213–218. (PMID: 1978206110.1016/j.ejphar.2009.09.039) ; Li W-X et al (2015) Icariin, a major constituent of flavonoids from Epimedium brevicornum, protects against cognitive deficits induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. Pharmacol Biochem Behav 138:40–48. (PMID: 2636492310.1016/j.pbb.2015.09.001) ; Greenberg SM et al (2020) Cerebral amyloid angiopathy and alzheimer disease—one peptide, two pathways. Nat Reviews Neurol 16(1):30–42. (PMID: 10.1038/s41582-019-0281-2) ; Zuroff L et al (2017) Clearance of cerebral Aβ in alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 74(12):2167–2201. (PMID: 28197669542550810.1007/s00018-017-2463-7) ; Cho M-H et al (2014) Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10(10):1761–1775. (PMID: 25126727419836110.4161/auto.29647) ; Wang N et al (2021) The combination of β-asarone and icariin inhibits amyloid-β and reverses cognitive deficits by promoting mitophagy in models of alzheimer’s disease. Oxidative Med Cell Long 2021:7158444. ; Jiang X et al (2019) Icariin ameliorates amyloid pathologies by maintaining homeostasis of autophagic systems in Aβ1–42-injected rats. Neurochem Res 44(12):2708–2722. (PMID: 3161230410.1007/s11064-019-02889-z) ; Zheng J et al (2021) Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. Pharm Biol 59(1):183–191. (PMID: 33556283887162710.1080/13880209.2021.1878238) ; Zhao L et al (2011) 17β-Estradiol regulates insulin-degrading enzyme expression via an ERβ/PI3-K pathway in hippocampus: relevance to alzheimer’s prevention. Neurobiol Aging 32(11):1949–1963. (PMID: 2005347810.1016/j.neurobiolaging.2009.12.010) ; Yamamoto N et al (2017) Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 362:70–78. (PMID: 2884400010.1016/j.neuroscience.2017.08.030) ; Sheng C et al (2017) Icariin attenuates synaptic and cognitive deficits in an Aβ1–42-induced rat model of alzheimer’s disease. BioMed Res Int 2017:7464872. (PMID: 29057264562575010.1155/2017/7464872) ; Zeng K-W et al (2010) Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59(6):542–550. (PMID: 2070863210.1016/j.neuropharm.2010.07.020) ; Sha D et al (2009) Icariin inhibits neurotoxicity of β-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. NeuroReport 20(17):1564–1567. (PMID: 1985876610.1097/WNR.0b013e328332d345) ; Zhang D et al (2015) Icariin prevents amyloid beta-induced apoptosis via the PI3K/Akt pathway in PC-12 cells. Evidence-Based Complement Alt Med 2015. ; Liu J et al (2015) A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide. Indian J Med Res 142(2):190. (PMID: 26354216461344010.4103/0971-5916.164254) ; Li X-A et al (2016) The protective effects of icariin against the homocysteine-induced neurotoxicity in the primary embryonic cultures of rat cortical neurons. Molecules 21(11):1557. (PMID: 627441210.3390/molecules21111557) ; Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672. (PMID: 1768451310.1038/nrn2194) ; Del Ser T et al (2013) Treatment of alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 33(1):205–215. (PMID: 22936007) ; Li Y et al (2021) Icaritin and icariin reduce p-Tau levels in a cell model of alzheimer’s disease by downregulating glycogen synthase kinase 3β. Biotechnol Appl Biochem 69:355. (PMID: 3350204310.1002/bab.2114) ; Chen Y et al (2016) The protective effect of icariin on mitochondrial transport and distribution in primary hippocampal neurons from 3× Tg-AD mice. Int J Mol Sci 17(2):163. (PMID: 478389710.3390/ijms17020163) ; Khezri MR et al (2022) MicroRNAs in the pathophysiology of alzheimer’s disease and parkinson’s disease: an overview. Mol Neurobiol 59:1589. (PMID: 3500135610.1007/s12035-022-02727-4) ; Liu B et al (2011) Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Res 1375:59–67. (PMID: 2118282810.1016/j.brainres.2010.12.053) ; Selvaraj S, Piramanayagam S (2019) Impact of gene mutation in the development of parkinson’s disease. Genes Dis 6(2):120–128. (PMID: 31193965654544710.1016/j.gendis.2019.01.004) ; Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of parkinson disease. J Clin Investig 111(2):145–151. (PMID: 1253186615188210.1172/JCI200317575) ; Roodveldt C, Christodoulou J, Dobson CM (2008) Immunological features of α-synuclein in parkinson’s disease. J Cell Mol Med 12(5b):1820–1829. (PMID: 18671754450615310.1111/j.1582-4934.2008.00450.x) ; Zhang L et al (2015) Icariin reduces α-synuclein over-expression by promoting α-synuclein degradation. Age 37(4):1–9. (PMID: 10.1007/s11357-015-9811-z) ; Choi MS et al (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson’s disease models. J Neurosci 34(45):15123–15131. (PMID: 25378175422003610.1523/JNEUROSCI.4751-13.2014) ; Cao J et al (2015) DJ-1 as a human oncogene and potential therapeutic target. Biochem Pharmacol 93(3):241–250. (PMID: 2549880310.1016/j.bcp.2014.11.012) ; Walker CL et al (2019) Bisperoxovanadium mediates neuronal protection through inhibition of PTEN and activation of PI3K/AKT-mTOR signaling after traumatic spinal injuries. J Neurotrauma 36(18):2676–2687. (PMID: 30672370672746910.1089/neu.2018.6294) ; Nakaso K, Ito S, Nakashima K (2008) Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a parkinson’s disease model of SH-SY5Y cells. Neurosci Lett 432(2):146–150. (PMID: 1820182310.1016/j.neulet.2007.12.034) ; SUN X-C, et al (2013) PI3K/Akt signaling pathway is involved in the neuroprotective effects of icariin on dopaminergic neurons in the mice model of parkinson’s disease. Phytomedicine 15:93. ; Zou X et al (2020) Icariin attenuates amyloid-β (Aβ)-Induced neuronal insulin resistance through PTEN downregulation. Front Pharmacol 11:880. (PMID: 32581820729610010.3389/fphar.2020.00880) ; Jiang P, Dickson DW (2018) Parkinson’s disease: experimental models and reality. Acta Neuropathol 135(1):13–32. (PMID: 2915116910.1007/s00401-017-1788-5) ; Dewapriya P et al (2013) Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of parkinson’s disease. Food Chem 141(2):1147–1157. (PMID: 2379089710.1016/j.foodchem.2013.04.004) ; Lee D-H, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49(1):271–280. (PMID: 2105661210.1016/j.fct.2010.10.029) ; Antolín I et al (2002) Protective effect of melatonin in a chronic experimental model of parkinson’s disease. Brain Res 943(2):163–173. (PMID: 1210103810.1016/S0006-8993(02)02551-9) ; Chen W-F et al (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99. (PMID: 2819047610.1016/j.phymed.2016.12.017) ; Zhang B et al (2019) Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J Neuroinflamm 16(1):1–11. (PMID: 10.1186/s12974-018-1391-2) ; Wang G-Q et al (2018) Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro. Front Mol Neurosci 10:441. (PMID: 29375304576725710.3389/fnmol.2017.00441) ; Zeng R et al (2019) Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicol Rep 6:637–644. (PMID: 31334034662421410.1016/j.toxrep.2019.06.014) ; Hickman S et al (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. (PMID: 30258234681796910.1038/s41593-018-0242-x) ; Allende ML et al (2021) Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 78:109879. (PMID: 3329673910.1016/j.cellsig.2020.109879) ; Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82. (PMID: 2780970610.1080/01616412.2016.1251711) ; Song WM, Colonna M (2018) The identity and function of microglia in neurodegeneration. Nat Immunol 19(10):1048–1058. (PMID: 3025018510.1038/s41590-018-0212-1) ; Wang Y et al (2019) Icariin attenuates M1 activation of microglia and Aβ plaque accumulation in the hippocampus and prefrontal cortex by up-regulating PPARγ in restraint/isolation-stressed APP/PS1 mice. Front NeuroSci 13:291. (PMID: 31001073645505110.3389/fnins.2019.00291) ; Wang W-Y et al (2015) Role of pro-inflammatory cytokines released from microglia in alzheimer’s disease. Annal Trans Med 3(10):136. ; Alam Q et al (2016) Inflammatory process in alzheimer’s and parkinson’s diseases: central role of cytokines. Curr Pharm Design 22(5):541–548. (PMID: 10.2174/1381612822666151125000300) ; Ferrer I et al (1998) NF-kB immunoreactivity is observed in association with beta A4 diffuse plaques in patients with alzheimer’s disease. Neuropathol Appl Neurobiol 24(4):271–277. (PMID: 977539210.1046/j.1365-2990.1998.00116.x) ; Ghafouri-Fard S et al (2021) Expression analysis of NF-kB-related lncRNAs in parkinson’s disease. Front Immunol 12:755246. https://doi.org/10.3389/fimmu. (PMID: 10.3389/fimmu347214318548831) ; Matteo V, Esposito E (2003) Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, parkinson’s disease, and amyotrophic lateral sclerosis.  Curr Drug Targets-CNS  Neurol Disorder 2:95–107. (PMID: 10.2174/1568007033482959) ; Singh SS et al (2020) NF-κB-mediated neuroinflammation in parkinson’s disease and potential therapeutic effect of polyphenols. Neurotox Res 37(3):491–507. (PMID: 3182322710.1007/s12640-019-00147-2) ; Pranski E et al (2013) NF-κB activity is inversely correlated to RNF11 expression in parkinson’s disease. Neurosci Lett 547:16–20. (PMID: 23669642369978510.1016/j.neulet.2013.04.056) ; Zeng K-W et al (2010) Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-κB and JNK/p38 MAPK pathways. Int Immunopharmacol 10(6):668–678. (PMID: 2034705310.1016/j.intimp.2010.03.010) ; Lee H, Pienaar IS (2014) Disruption of the blood-brain barrier in parkinson’s disease: curse or route to a cure. Front Biosci (Landmark Ed) 19:272–280. (PMID: 10.2741/4206) ; Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of alzheimer’s disease. J Cereb Blood Flow Metabolism 33(10):1500–1513. (PMID: 10.1038/jcbfm.2013.135) ; Yang W et al (2021) Intradermal injection of icariin-HP-β-cyclodextrin improved traumatic brain injury via the trigeminal epineurium-brain dura pathway. J Drug Target 30:557. (PMID: 10.1080/1061186X.2021.2023159) ; Shen R et al (2015) A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 24(2):224–231. (PMID: 2552847610.1016/j.intimp.2014.12.015) ; Wilson EN et al (2020) Soluble TREM2 is elevated in parkinson’s disease subgroups with increased CSF tau. Brain 143(3):932–943. (PMID: 32065223708966810.1093/brain/awaa021) ; Henjum K et al (2016) Cerebrospinal fluid soluble TREM2 in aging and alzheimer’s disease. Alzheimers Res Ther 8(1):1–11. (PMID: 10.1186/s13195-016-0182-1) ; Feuerbach D et al (2017) ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157. Neurosci Lett 660:109–114. (PMID: 2892348110.1016/j.neulet.2017.09.034) ; Schlepckow K et al (2017) An alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol Med 9(10):1356–1365. (PMID: 28855300562385910.15252/emmm.201707672) ; Simonian N, Coyle J (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36(1):83–106. (PMID: 872538310.1146/annurev.pa.36.040196.000503) ; Zhang L et al (2010) Icariin inhibits hydrogen peroxide-mediated cytotoxicity by up-regulating sirtuin type 1-dependent catalase and peroxiredoxin. Basic Clin Pharmacol Toxicol 107:899–905. (PMID: 20533910) ; Luo Y et al (2007) Protective effects of icariin against learning and memory deficits induced by aluminium in rats. Clin Exp Pharmacol Physiol 34(8):792–795. (PMID: 1760055910.1111/j.1440-1681.2007.04647.x) ; Zhang Y, Kong W-N, Chai X-Q (2018) Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of alzheimer’s disease mice. Neural Regener Res 13(4):731. (PMID: 10.4103/1673-5374.230302) ; Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. (PMID: 23294312468083910.1146/annurev-pharmtox-011112-140320) ; Zheng Y et al (2019) Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 73:304–311. (PMID: 3112853010.1016/j.intimp.2019.05.033) ; Zhu L et al (2019) Activation of Nrf2 signaling by Icariin protects against 6-OHDA‐induced neurotoxicity. Biotechnol Appl Chem 66(3):465–471. ; Sweeney G, Song J (2016) The association between PGC-1α and alzheimer’s disease. Anat cell biology 49(1):1–6. (PMID: 10.5115/acb.2016.49.1.1) ; Zheng B et al (2010) Pgc-1 α, a potential therapeutic target for early intervention in parkinson’s disease. Sci Trans Med 2(52):73. (PMID: 10.1126/scitranslmed.3001059) ; Zeng R et al (2019) Icariin protects rotenone-induced neurotoxicity through induction of SIRT3. Toxicol Appl Pharmcol 379:114639. (PMID: 10.1016/j.taap.2019.114639)
  • Contributed Indexing: Keywords: Alzheimer’s disease; Icariin; Neuroinflammation; Oxidative stress; Parkinson’s disease
  • Substance Nomenclature: 0 (Flavonoids) ; 0 (Neuroprotective Agents) ; VNM47R2QSQ (icariin)
  • Entry Date(s): Date Created: 20220708 Date Completed: 20220915 Latest Revision: 20220915
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -