Zum Hauptinhalt springen

Oviposition Preference and Performance of a Specialist Herbivore Is Modulated by Natural Enemies, Larval Odors, and Immune Status.

Ghosh, E ; Sasidharan, A ; et al.
In: Journal of chemical ecology, Jg. 48 (2022-08-01), Heft 7-8, S. 670-682
Online academicJournal

Titel:
Oviposition Preference and Performance of a Specialist Herbivore Is Modulated by Natural Enemies, Larval Odors, and Immune Status.
Autor/in / Beteiligte Person: Ghosh, E ; Sasidharan, A ; Ode, PJ ; Venkatesan, R
Link:
Zeitschrift: Journal of chemical ecology, Jg. 48 (2022-08-01), Heft 7-8, S. 670-682
Veröffentlichung: New York, NY : Springer ; <i>Original Publication</i>: New York, Plenum Press., 2022
Medientyp: academicJournal
ISSN: 1573-1561 (electronic)
DOI: 10.1007/s10886-022-01363-5
Schlagwort:
  • Animals
  • Female
  • Herbivory
  • Larva physiology
  • Mustard Plant
  • Odorants
  • Oviposition
  • Hymenoptera physiology
  • Moths physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Chem Ecol] 2022 Aug; Vol. 48 (7-8), pp. 670-682. <i>Date of Electronic Publication: </i>2022 May 23.
  • MeSH Terms: Hymenoptera* / physiology ; Moths* / physiology ; Animals ; Female ; Herbivory ; Larva / physiology ; Mustard Plant ; Odorants ; Oviposition
  • References: Aartsma Y, Bianchi FJ, van der Werf W, Poelman EH, Dicke M (2017) Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytol 216:1054–1063. https://doi.org/10.1111/nph.14475. (PMID: 10.1111/nph.14475281953466079636) ; Badenes-Pérez FR, Shelton AM, Nault BA (2004) Evaluating trap crops for diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 97:1365–1372. https://doi.org/10.1093/jee/97.4.1365. (PMID: 10.1093/jee/97.4.136515384349) ; Bandoly M, Grichnik R, Hilker M, Steppuhn A (2016) Priming of anti-herbivore defence in Nicotiana attenuata by insect oviposition: herbivore-specific effects. Plant Cell Environ 39:848–859. https://doi.org/10.1111/pce.12677. (PMID: 10.1111/pce.1267726566692) ; Bartea CM, Casacci LP, Bonelli S, Zampollo S, Barbero F (2020) Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying. Front Plant Sci 10:1768. https://doi.org/10.3389/fpls.2019.01768. (PMID: 10.3389/fpls.2019.01768) ; Bukovinsky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM, Harvey JA, Dicke M (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:299–308. https://doi.org/10.1007/s00442-009-1308-y. (PMID: 10.1007/s00442-009-1308-y) ; Charleston DS, Kfir R (2000) The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth, Plutella xylostella, in South Africa. J Crop Prot 19:455–460. https://doi.org/10.1016/S0261-2194(00)00037-5. (PMID: 10.1016/S0261-2194(00)00037-5) ; Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665. https://doi.org/10.1111/j.1365-3040.2008.01913.x. (PMID: 10.1111/j.1365-3040.2008.01913.x19021885) ; Drezen JM, Bézier A, Burke GR, Strand MR (2022) Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Curr Opin Insect Sci 49:93–100. https://doi.org/10.1016/j.cois.2021.12.003. (PMID: 10.1016/j.cois.2021.12.00334954138) ; Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJ, Dicke M (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 7:e43607. https://doi.org/10.1371/journal.pone.0043607. (PMID: 10.1371/journal.pone.0043607229128933422343) ; Fox LR, Eisenbach J (1992) Contrary choices: possible exploitation of enemy-free space by herbivorous insects in cultivated vs. wild crucifers. Oecologia 89:574–579. https://doi.org/10.1007/BF00317166. ; Furlong MJ, Shi ZH, Liu SS, Zalucki MP (2004) Evaluation of the impact of natural enemies on Plutella xylostella L. (Lepidoptera: Yponomeutidae) populations on commercial Brassica farms. Agri for Entomol 6:311–322. https://doi.org/10.1111/j.1461-9555.2004.00228.x. (PMID: 10.1111/j.1461-9555.2004.00228.x) ; Garvey MA, Creighton JC, Kaplan I (2020) Tritrophic interactions reinforce a negative preference-performance relationship in the tobacco hornworm Manduca sexta. Ecol Entomol 45:783–794. https://doi.org/10.1111/een.12852. (PMID: 10.1111/een.12852) ; Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TC, Erb M, Herrero S (2019) Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? Appl Environ Microbiol 85:e01468-e1518. https://doi.org/10.1128/AEM.01468-18. (PMID: 10.1128/AEM.01468-1830366995) ; Gauld ID, Gaston KJ, Janzen DH (1992) Plant allelochemicals, tritrophic interactions and the anomalous diversity of tropical parasitoids: the “nasty” host hypothesis. Oikos 65:353–357. https://doi.org/10.2307/3545032. (PMID: 10.2307/3545032) ; Ghosh E, Venkatesan R (2019) Plant volatiles modulate immune responses of Spodoptera litura. J Chem Ecol 45:715–724. https://doi.org/10.1007/s10886-019-01091-3. (PMID: 10.1007/s10886-019-01091-331385154) ; Ghosh E, Sasidharan A, Ode PJ, Venkatesan R (2021) Oviposition preference is regulated by volatiles, immune status and enemy-free space in Plutella xylostella – parasitoid interaction, Dryad, dataset. https://doi.org/10.5061/dryad.fttdz08tk. ; Grzywacz D, Rossbach A, Rauf A, Russell DA, Srinivasan R, Shelton AM (2010) Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protect 29:68–79. https://doi.org/10.1016/j.cropro.2009.08.009. (PMID: 10.1016/j.cropro.2009.08.009) ; Hansen AC, Glassmire AE, Dyer LA, Smilanich AM (2017) Patterns in parasitism frequency explained by diet and immunity. Ecography 40:803–805. (PMID: 10.1111/ecog.02498) ; Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61. https://doi.org/10.1111/j.1469-8137.2007.02330.x. (PMID: 10.1111/j.1469-8137.2007.02330.x18086230) ; Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Annu Rev Entomol 60:493–515. https://doi.org/10.1146/annurev-ento-010814-020620. (PMID: 10.1146/annurev-ento-010814-02062025341089) ; Hilker M, Fatouros NE (2016) Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr Opin Plant Biol 32:9–16. https://doi.org/10.1016/j.pbi.2016.05.003. (PMID: 10.1016/j.pbi.2016.05.00327267276) ; Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623. (PMID: 10.1146/annurev.ento.54.110807.09062318811249) ; Jalali SK, Rabindra RJ, Rao NS, Dasan CB (2003) Mass production of trichogrammatids and chrysopids. Project Directorate of Biological Control, Bangalore, India. pp, 16. ; Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286. https://doi.org/10.1111/j.1095-8312.1984.tb00145.x. (PMID: 10.1111/j.1095-8312.1984.tb00145.x) ; Kaplan I, Carrillo J, Garvey M, Ode PJ (2016) Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr Opin Insect Sci 14:112–119. https://doi.org/10.1016/j.cois.2016.03.004. (PMID: 10.1016/j.cois.2016.03.00427436656) ; Kares EA, Ebaid GH, El-Sappagh IA (2009) Biological studies on the larval parasitoid species Bracon brevicornis Wesm. (Hymenoptera: Braconidae), reared on different insect hosts. Egypt J Biol Pest Control 7:89–95. https://doi.org/10.21608/eajbsa.2014.13138. (PMID: 10.21608/eajbsa.2014.13138) ; Klemola N, Klemola T, Rantala MJ, Ruuhola T (2007) Natural host-plant quality affects immune defence of an insect herbivore. Entomol Exp Appl 123:167–176. https://doi.org/10.1111/j.1570-7458.2007.00533.x. (PMID: 10.1111/j.1570-7458.2007.00533.x) ; Lampert EC, Bowers MD (2015) Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores. J Chem Ecol 41:85–92. https://doi.org/10.1007/s10886-014-0532-z. (PMID: 10.1007/s10886-014-0532-z25516226) ; Lee KP, Cory JS, Wilson K, Raubenheimer D, Simpson SJ (2006) Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc Roy Soc B 273:823–829. https://doi.org/10.1098/rspb.2005.3385. (PMID: 10.1098/rspb.2005.3385) ; Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419. https://doi.org/10.1023/A:1005535129399. (PMID: 10.1023/A:1005535129399) ; McCormick AC, Unsicker SB, Gershenzon J (2012) The speciality of herbivore induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310. https://doi.org/10.1016/j.tplants.2012.03.012. (PMID: 10.1016/j.tplants.2012.03.012) ; Milonas PG, Anastasaki E, Partsinevelos G (2019) Oviposition-induced volatiles affect electrophysiological and behavioral responses of egg parasitoids. Insects 10:437. https://doi.org/10.3390/insects10120437. (PMID: 10.3390/insects101204376956134) ; Muller K, Vogelweith F, Thiéry D, Moret Y, Moreau J (2015) Immune benefits from alternative host plants could maintain polyphagy in a phytophagous insect. Oecologia 177:467–475. https://doi.org/10.1007/s00442-014-3097-1. (PMID: 10.1007/s00442-014-3097-125273954) ; Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92. https://doi.org/10.1146/annurev.ento.47.091201.145121. (PMID: 10.1146/annurev.ento.47.091201.14512111729069) ; Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185. https://doi.org/10.1146/annurev.ento.51.110104.151110. (PMID: 10.1146/annurev.ento.51.110104.15111016332208) ; Ode PJ (2019) Plant toxins and parasitoid trophic ecology. Curr Opin Insect Sci 32:118–123. https://doi.org/10.1016/j.cois.2019.01.007. (PMID: 10.1016/j.cois.2019.01.00731113623) ; Ojala K, Julkunen-Tiitto R, Lindström L, Mappes J (2005) Diet affects the immune defence and life-history traits of an arctiid moth Parasemia plantaginis. Evol Ecol Res 7:1153–1170. https://doi.org/10.1002/ece3.7802. (PMID: 10.1002/ece3.7802) ; Oudenhove L, Mailleret L, Fauvergue X (2017) Infochemical use and dietary specialization in parasitoids: a meta-analysis. Ecol Evol 7:4804–4811. https://doi.org/10.1002/ece3.2888. (PMID: 10.1002/ece3.2888286908095496531) ; Pennachio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258. https://doi.org/10.1146/annurev.ento.51.110104.151029. (PMID: 10.1146/annurev.ento.51.110104.151029) ; Petschenka G, Agrawal AA (2016) How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr Opin Insect Sci 14:17–24. https://doi.org/10.1016/j.cois.2015.12.004. (PMID: 10.1016/j.cois.2015.12.00427436642) ; Randlkofer B, Obermaier E, Hilker M, Meiners T (2010) Vegetation complexity—the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl Ecol 11:383–395. https://doi.org/10.1016/j.baae.2010.03.003. (PMID: 10.1016/j.baae.2010.03.003) ; Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. PNAS 99:11223–11228. https://doi.org/10.1073/pnas.172112899. (PMID: 10.1073/pnas.17211289912161563123237) ; Renwick JAA, Haribal M, Gouinguene S, Stadler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32:755–766. https://doi.org/10.1007/s10886-006-9036-9. (PMID: 10.1007/s10886-006-9036-916718569) ; Reudler JH, Biere A, Harvey JA, van Nouhuys S (2011) Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J Chem Ecol 37:765–778. https://doi.org/10.1007/s10886-011-9983-7. (PMID: 10.1007/s10886-011-9983-7216918103125503) ; Sang JP, Minchinton IR, Johnstone PK, Truscott RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:77–93. https://doi.org/10.4141/cjps84-011. (PMID: 10.4141/cjps84-011) ; Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford. ; Singer MS, Carrière Y, Theuring C, Hartmann T (2004) Disentangling food quality from resistance against parasitoids: diet choice by a generalist caterpillar. Am Nat 164:423–429. https://doi.org/10.1086/423152. (PMID: 10.1086/42315215478095) ; Singer MS, Mace KC, Bernays EA (2009) Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLoS One 4:e4796. https://doi.org/10.1371/journal.pone.0004796. (PMID: 10.1371/journal.pone.0004796192740982652102) ; Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621. https://doi.org/10.1111/j.1461-0248.2009.01309.x. (PMID: 10.1111/j.1461-0248.2009.01309.x19392713) ; Smilanich AM, Mason PA, Sprung L, Chase TR, Singer MS (2011) Complex effects of parasitoids on pharmacophagy and diet choice of a polyphagous caterpillar. Oecologia 165:995–1005. https://doi.org/10.1007/s00442-010-1803-1. (PMID: 10.1007/s00442-010-1803-120941512) ; Srinivasan K, Moorthy PK (1992) Development and adoption of integrated pest management for major pests of cabbage using Indian mustard as a trap crop. In 2nd International Workshop on the Diamondback Moth and other Cruciferous Pests. Asian Vegetable Research and Development Center, Taipei, Taiwan, pp, 511–521. ; Stamp N (2001) Enemy-free space via host plant chemistry and dispersion: assessing the influence of tri-trophic interactions. Oecologia 128:153–163. https://doi.org/10.1007/s004420100679. (PMID: 10.1007/s00442010067928547463) ; Videla M, Valladares GR, Salvo A (2012) Choosing between good and better: optimal oviposition drives host plant selection when parents and offspring agree on best resources. Oecologia 169:743–751. https://doi.org/10.1007/s00442-011-2231-6. (PMID: 10.1007/s00442-011-2231-622246471) ; Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133. https://doi.org/10.1146/annurev.en.21.010176.000545. (PMID: 10.1146/annurev.en.21.010176.000545) ; Vogelweith F, Thiéry D, Quaglietti B, Moret Y, Moreau J (2011) Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct Ecol 25:1241–1247. https://doi.org/10.1111/j.1365-2435.2011.01911.x. (PMID: 10.1111/j.1365-2435.2011.01911.x) ; Yen GC, Wei QK (1993) Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J Sci Food Agric 61:471–475. https://doi.org/10.1002/jsfa.2740610415. (PMID: 10.1002/jsfa.2740610415) ; Zhang PJ, Lu YB, Zalucki MP, Liu SS (2012) Relationship between adult oviposition preference and larval performance of the diamondback moth, Plutella xylostella. J Pest Sci 85:247–252. https://doi.org/10.1007/s10340-012-0425-2. (PMID: 10.1007/s10340-012-0425-2)
  • Contributed Indexing: Keywords: Cellular immunity; Enemy-free space; Host larval body-odor; Host selection; Parasitoid wasp; Tri-trophic interactions
  • Entry Date(s): Date Created: 20220523 Date Completed: 20220819 Latest Revision: 20220819
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -