Zum Hauptinhalt springen

Barrier effect and wound healing activity of the medical device REF-FTP78 in the treatment of gastroesophageal reflux disease.

Pecora, TMG ; Parisi, OI ; et al.
In: Scientific reports, Jg. 12 (2022-04-12), Heft 1, S. 6136
Online academicJournal

Titel:
Barrier effect and wound healing activity of the medical device REF-FTP78 in the treatment of gastroesophageal reflux disease.
Autor/in / Beteiligte Person: Pecora, TMG ; Parisi, OI ; Bertin, W ; Ragazzo, B ; Dattilo, M ; Scigliano, N ; Malivindi, R ; Amone, F ; Puoci, F
Link:
Zeitschrift: Scientific reports, Jg. 12 (2022-04-12), Heft 1, S. 6136
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2022
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-022-10171-6
Schlagwort:
  • Animals
  • Anti-Inflammatory Agents pharmacology
  • Anti-Inflammatory Agents therapeutic use
  • Caffeine therapeutic use
  • Swine
  • Wound Healing
  • Antioxidants pharmacology
  • Antioxidants therapeutic use
  • Gastroesophageal Reflux drug therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Sci Rep] 2022 Apr 12; Vol. 12 (1), pp. 6136. <i>Date of Electronic Publication: </i>2022 Apr 12.
  • MeSH Terms: Antioxidants* / pharmacology ; Antioxidants* / therapeutic use ; Gastroesophageal Reflux* / drug therapy ; Animals ; Anti-Inflammatory Agents / pharmacology ; Anti-Inflammatory Agents / therapeutic use ; Caffeine / therapeutic use ; Swine ; Wound Healing
  • References: Vakil, N., Van Zanten, S. V., Kahrilas, P., Dent, J. & Jones, R. The Montreal definition and classification of gastroesophageal reflux disease: A global evidence-based consensus. Off. J. Am. Coll. Gastroenterol. 101, 1900–1920 (2006). (PMID: 10.1111/j.1572-0241.2006.00630.x) ; Nirwan, J. S., Hasan, S. S., Babar, Z.-U.-D., Conway, B. R. & Ghori, M. U. Global prevalence and risk factors of gastro-oesophageal reflux disease (GORD): Systematic review with meta-analysis. Sci. Rep. 10, 1–14 (2020). (PMID: 10.1038/s41598-020-62795-1) ; Badillo, R. & Francis, D. Diagnosis and treatment of gastroesophageal reflux disease. World J. Gastrointest. Pharmacol. Therap. 5, 105 (2014). (PMID: 10.4292/wjgpt.v5.i3.105) ; Park, C. H. et al. Treatment of non-erosive reflux disease and dynamics of the esophageal microbiome: A prospective multicenter study. Sci. Rep. 10, 1–11 (2020). ; Menezes, M. A. & Herbella, F. A. Pathophysiology of gastroesophageal reflux disease. World J. Surg. 41, 1666–1671 (2017). (PMID: 2825845210.1007/s00268-017-3952-4) ; Chen, J. & Brady, P. Gastroesophageal reflux disease: Pathophysiology, diagnosis, and treatment. Gastroenterol. Nurs. 42, 20–28 (2019). (PMID: 3068870310.1097/SGA.0000000000000359) ; Sadatomi, D., Kono, T., Mogami, S. & Fujitsuka, N. Weak acids induce PGE2 production in human oesophageal cells: Novel mechanisms underlying GERD symptoms. Sci. Rep. 10, 1–13 (2020). (PMID: 10.1038/s41598-020-77495-z) ; Orlando, R. C. The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract. Res. Clin. Gastroenterol. 24, 873–882 (2010). (PMID: 21126700299598910.1016/j.bpg.2010.08.008) ; Agostinis, C. et al. Protective and regenerative effects of a novel medical device against esophageal mucosal damage using in vitro and ex vivo models. Biomed. Pharmacother. 131, 110752 (2020). (PMID: 3315291810.1016/j.biopha.2020.110752) ; Yang, Y.-X., Lewis, J. D., Epstein, S. & Metz, D. C. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 296, 2947–2953 (2006). (PMID: 1719089510.1001/jama.296.24.2947) ; Ament, P. W., Dicola, D. & James, M. E. Reducing adverse effects of proton pump inhibitors. Am. Fam. Phys. 86, 66–70 (2012). ; Meghnem, D., Oldford, S. A., Haidl, I. D., Barrett, L. & Marshall, J. S. Histamine receptor 2 blockade selectively impacts B and T cells in healthy subjects. Sci. Rep. 11, 1–10 (2021). (PMID: 10.1038/s41598-021-88829-w) ; Food & Drug Administration. FDA Requests Removal of All Ranitidine Products (Zantac) from the Market. https://www.fda.gov/news-events/press-announcements/fda-requests-removal-all-ranitidine-products-zantac-market . (Accessed on June 2021). ; Reynolds, T. & Dweck, A. Aloe vera leaf gel: A review update. J. Ethnopharmacol. 68, 3–37 (1999). (PMID: 1062485910.1016/S0378-8741(99)00085-9) ; Maan, A. A. et al. The therapeutic properties and applications of Aloe vera: A review. J. Herbal Med. 12, 1–10 (2018). (PMID: 10.1016/j.hermed.2018.01.002) ; Chithra, P., Sajithlal, G. & Chandrakasan, G. Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Mol. Cell. Biochem. 181, 71–76 (1998). (PMID: 956224310.1023/A:1006813510959) ; Chithra, P., Sajithlal, G. & Chandrakasan, G. Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J. Ethnopharmacol. 59, 179–186 (1998). (PMID: 950790210.1016/S0378-8741(97)00112-8) ; Fox, L. T. et al. In vitro wound healing and cytotoxic activity of the gel and whole-leaf materials from selected aloe species. J. Ethnopharmacol. 200, 1–7 (2017). (PMID: 2822992010.1016/j.jep.2017.02.017) ; Xintian, W. et al. Effectiveness of aloe vera for acute and chronic wounds: A systematic review. Chin. J. Evid. Based Med. 13, 468–473 (2013). ; Femenia, A., Sánchez, E. S., Simal, S. & Rosselló, C. Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohyd. Polym. 39, 109–117 (1999). (PMID: 10.1016/S0144-8617(98)00163-5) ; Jettanacheawchankit, S., Sasithanasate, S., Sangvanich, P., Banlunara, W. & Thunyakitpisal, P. Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing. J. Pharmacol. Sci. 109, 525–531 (2009). (PMID: 1937263510.1254/jphs.08204FP) ; Keshavarzi, Z. et al. The effects of aqueous extract of Aloe vera leaves on the gastric acid secretion and brain and intestinal water content following acetic acid-induced gastric ulcer in male rats. Avicenna J. Phytomed. 4, 137 (2014). (PMID: 250503114103709) ; Werawatganon, D. et al. Aloe vera attenuated gastric injury on indomethacin-induced gastropathy in rats. World J. Gastroenterol. 20, 18330 (2014). (PMID: 25561799427796910.3748/wjg.v20.i48.18330) ; Kaithwas, G., Singh, P. & Bhatia, D. Evaluation of in vitro and in vivo antioxidant potential of polysaccharides from Aloe vera (Aloe barbadensis Miller) gel. Drug Chem. Toxicol. 37, 135–143 (2014). (PMID: 2452425910.3109/01480545.2013.834350) ; Akpan, U., Nna, V., Ekpenyong, C., Antai, A. & Osim, E. Protective role of crude Aloe vera gel against gastric ulcers in alloxan-induced diabetic rats. Res. J. Pharm. Biol. Chem. Sci. 5, 129–138 (2014). ; Panahi, Y., Khedmat, H., Valizadegan, G., Mohtashami, R. & Sahebkar, A. Efficacy and safety of Aloe vera syrup for the treatment of gastroesophageal reflux disease: A pilot randomized positive-controlled trial. J. Tradit. Chin. Med. 35, 632–636 (2015). (PMID: 2674230610.1016/S0254-6272(15)30151-5) ; Senni, K. et al. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch. Biochem. Biophys. 445, 56–64 (2006). (PMID: 1636423410.1016/j.abb.2005.11.001) ; Kuda, T. et al. Antioxidant and anti-norovirus properties of aqueous acetic acid macromolecular extracts of edible brown macroalgae. LWT 141, 110942 (2021). (PMID: 10.1016/j.lwt.2021.110942) ; Phull, A.-R., Majid, M., Haq, I.-U., Khan, M. R. & Kim, S. J. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar. Int. J. Biol. Macromol. 97, 468–480 (2017). (PMID: 2810437110.1016/j.ijbiomac.2017.01.051) ; Mak, W., Hamid, N., Liu, T., Lu, J. & White, W. Fucoidan from New Zealand Undaria pinnatifida: Monthly variations and determination of antioxidant activities. Carbohyd. Polym. 95, 606–614 (2013). (PMID: 10.1016/j.carbpol.2013.02.047) ; Phull, A. R. & Kim, S. J. Fucoidan as bio-functional molecule: Insights into the anti-inflammatory potential and associated molecular mechanisms. J. Funct. Foods 38, 415–426 (2017). (PMID: 10.1016/j.jff.2017.09.051) ; Phull, A. R. & Kim, S. J. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes. Biologia 72, 1362–1369 (2017). (PMID: 10.1515/biolog-2017-0158) ; Andryukov, B. G. et al. Sulfated polysaccharides from marine algae as a basis of modern biotechnologies for creating wound dressings: Current achievements and future prospects. Biomedicines 8, 301 (2020). (PMID: 755479010.3390/biomedicines8090301) ; Andrews, G. P., Laverty, T. P. & Jones, D. S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 71, 505–518 (2009). (PMID: 1898405110.1016/j.ejpb.2008.09.028) ; Accili, D., Menghi, G., Bonacucina, G., Di Martino, P. & Palmieri, G. F. Mucoadhesion dependence of pharmaceutical polymers on mucosa characteristics. Eur. J. Pharm. Sci. 22, 225–234 (2004). (PMID: 1519657810.1016/j.ejps.2003.12.011) ; Di Simone, M. P. et al. Barrier effect of Esoxx(®) on esophageal mucosal damage: Experimental study on ex-vivo swine model. Clin. Exp. Gastroenterol. 5, 103–107 (2012). (PMID: 22767997338783210.2147/CEG.S31404) ; Batchelor, H. K. et al. An in vitro mucosal model for prediction of the bioadhesion of alginate solutions to the oesophagus. Int. J. Pharm. 238, 123–132 (2002). (PMID: 1199681610.1016/S0378-5173(02)00062-5) ; Lange, S., Delbro, D. S. & Jennische, E. Evans blue permeation of intestinal mucosa in the rat. Scand. J. Gastroenterol. 29, 38–46 (1994). (PMID: 812817610.3109/00365529409090435) ; Kitajima, S., Takuma, S. & Morimoto, M. Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp. Anim. 48, 137–143 (1999). (PMID: 1048001810.1538/expanim.48.137) ; Nosrati, H. et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnol. 19, 1 (2021). (PMID: 10.1186/s12951-020-00755-7) ; Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200 (1958). (PMID: 10.1038/1811199a0) ; Kedare, S. B. & Singh, R. P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412–422 (2011). (PMID: 23572765355118210.1007/s13197-011-0251-1) ; Parisi, O. I. et al. Antioxidant and spectroscopic studies of crosslinked polymers synthesized by grafting polymerization of ferulic acid. Polym. Adv. Technol. 21, 774–779 (2010). (PMID: 10.1002/pat.1499) ; Puoci, F. et al. Antioxidant activity of a Mediterranean food product: “fig syrup”. Nutrients 3, 317–329 (2011). (PMID: 22254099325774410.3390/nu3030317) ; Prior, R. L., Wu, X. & Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005). (PMID: 1588487410.1021/jf0502698) ; Hu, Y., Xu, J. & Hu, Q. Evaluation of antioxidant potential of aloe vera (Aloe barbadensis miller) extracts. J. Agric. Food Chem. 51, 7788–7791 (2003). (PMID: 1466454610.1021/jf034255i) ; Lee, K. Y., Weintraub, S. T. & Yu, B. P. Isolation and identification of a phenolic antioxidant from Aloe barbadensis. Free Radic. Biol. Med. 28, 261–265 (2000). (PMID: 1128129310.1016/S0891-5849(99)00235-X) ; Parisi, O. I. et al. Mesoporous nanocrystalline TiO2 loaded with ferulic acid for sunscreen and photo-protection: Safety and efficacy assessment. RSC Adv. 6, 83767–83775 (2016). (PMID: 10.1039/C6RA07653J) ; Benevides Bahiense, J. et al. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol. 55, 991–997 (2017). (PMID: 28166708613068610.1080/13880209.2017.1285324) ; Pecora, T. M. G. et al. Rheological behavior of a new mucoadhesive oral formulation based on sodium chondroitin sulfate, xyloglucan and glycerol. J. Funct. Biomater. 12, 28 (2021). (PMID: 33925057816777610.3390/jfb12020028) ; Casiraghi, A. et al. In vitro method to evaluate the barrier properties of medical devices for cutaneous use. Regul. Toxicol. Pharmacol. 90, 42–50 (2017). (PMID: 2882287810.1016/j.yrtph.2017.08.007) ; Pellegatta, G. et al. Evaluation of human esophageal epithelium permeability in presence of different formulations containing hyaluronic acid and chondroitin sulphate. Med. Devices (Auckland) 13, 57 (2020). (PMID: 10.2147/MDER.S234810) ; Parisi, O. I. et al. Surface modifications of molecularly imprinted polymers for improved template recognition in water media. J. Polym. Res. 17, 355–362 (2010). (PMID: 10.1007/s10965-009-9322-7) ; Salaroli, R. et al. Barrier effect of a new topical agent on damaged esophageal mucosa: Experimental study on an ex vivo swine model. Clin. Exp. Gastroenterol. 13, 569–576 (2020). (PMID: 33223844767149010.2147/CEG.S269568) ; Wound Healing Assay. https://www.cellbiolabs.com/wound-healing-assays . (Accessed on March 2021). ; Parisi, O. I. et al. Safety and efficacy of dextran-rosmarinic acid conjugates as innovative polymeric antioxidants in skin whitening: What is the evidence? Cosmetics 4, 28 (2017). (PMID: 10.3390/cosmetics4030028)
  • Substance Nomenclature: 0 (Anti-Inflammatory Agents) ; 0 (Antioxidants) ; 3G6A5W338E (Caffeine)
  • Entry Date(s): Date Created: 20220413 Date Completed: 20220414 Latest Revision: 20221113
  • Update Code: 20231215
  • PubMed Central ID: PMC9005723

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -