Zum Hauptinhalt springen

Icariin ameliorates metabolic syndrome-induced benign prostatic hyperplasia in rats.

Aljehani, AA ; Albadr, NA ; et al.
In: Environmental science and pollution research international, Jg. 29 (2022-03-01), Heft 14, S. 20370-20378
Online academicJournal

Titel:
Icariin ameliorates metabolic syndrome-induced benign prostatic hyperplasia in rats.
Autor/in / Beteiligte Person: Aljehani, AA ; Albadr, NA ; Nasrullah, MZ ; Neamatallah, T ; Eid, BG ; Abdel-Naim, AB
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 29 (2022-03-01), Heft 14, S. 20370-20378
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2022
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-021-17245-4
Schlagwort:
  • Animals
  • Flavonoids
  • Male
  • Prostate metabolism
  • Prostate pathology
  • Rats
  • Testosterone metabolism
  • Metabolic Syndrome
  • Prostatic Hyperplasia drug therapy
  • Prostatic Hyperplasia metabolism
  • Prostatic Hyperplasia pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2022 Mar; Vol. 29 (14), pp. 20370-20378. <i>Date of Electronic Publication: </i>2021 Nov 04.
  • MeSH Terms: Metabolic Syndrome* ; Prostatic Hyperplasia* / drug therapy ; Prostatic Hyperplasia* / metabolism ; Prostatic Hyperplasia* / pathology ; Animals ; Flavonoids ; Male ; Prostate / metabolism ; Prostate / pathology ; Rats ; Testosterone / metabolism
  • References: Aaron-Brooks LTM, Sasaki T, Vickman RE et al (2019) Hyperglycemia and T cell infiltration are associated with stromal and epithelial prostatic hyperplasia in the nonobese diabetic mouse. Prostate 79:980–993. https://doi.org/10.1002/pros.23809. (PMID: 10.1002/pros.23809) ; Abdallah HM, El-Bassossy HM, Mohamed GA et al (2016) Phenolics from Garcinia mangostana alleviate exaggerated vasoconstriction in metabolic syndrome through direct vasodilatation and nitric oxide generation. BMC Complement Altern Med 16. https://doi.org/10.1186/s12906-016-1340-5. ; Alhakamy NA, Fahmy UA, Badr-Eldin SM, et al (2020) Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics 12 https://doi.org/10.3390/pharmaceutics12040346. ; Aljehani AA, Albadr NA, Eid BG, Abdel-Naim AB (2020) Icariin enhances AMP-activated protein kinase and prevents high fructose and high salt-induced metabolic syndrome in rats. Saudi Pharm J 28:1309–1316. https://doi.org/10.1016/j.jsps.2020.08.021. (PMID: 10.1016/j.jsps.2020.08.021) ; Azhar AS, Zaher ZF, Ashour OM, Abdel-Naim AB (2020) 2-Methoxyestradiol ameliorates metabolic syndrome-induced hypertension and catechol-O-methyltransferase inhibited expression and activity in rats. Eur J Pharmacol 882. https://doi.org/10.1016/j.ejphar.2020.173278. ; De Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54:945–955. (PMID: 10.1373/clinchem.2007.100156) ; Devlin CM, Simms MS, Maitland NJ (2020) Benign prostatic hyperplasia – what do we know? BJU Int 127:389–399. https://doi.org/10.1111/bju.15229. (PMID: 10.1111/bju.15229) ; Ding J, Tang Y, Tang Z, et al (2018) Icariin improves the sexual function of male mice through the PI3K/AKT/eNOS/NO signalling pathway. Andrologia 50 https://doi.org/10.1111/and.12802. ; Ellman G (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6. (PMID: 10.1016/0003-9861(59)90090-6) ; Green CJ, Macrae K, Fogarty S et al (2011) Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor κB signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochem J 435:463–474. https://doi.org/10.1042/BJ20101517. (PMID: 10.1042/BJ20101517) ; Gu ZF, Zhang ZT, Wang JY, Bin XuB (2017) Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ Toxicol Pharmacol 54:7–13. https://doi.org/10.1016/j.etap.2017.06.004. (PMID: 10.1016/j.etap.2017.06.004) ; Han N, Zhang B, Wei X, Yu L (2019) The inhibitory function of icariin in cell model of benign prostatic hyperplasia by upregulation of miR-7. BioFactors.  https://doi.org/10.1002/biof.1591. ; He C, Wang Z, Shi J (2020) Pharmacological effects of icariin. In: Advances in Pharmacology. Academic Press Inc., pp 179–203. ; He W, Sun H, Yang B et al (1995) Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung 45:910–913. ; Huang S, Xie T, Liu W (2019) Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J Buon 24:990–996. ; Huang X, Zhu D, Lou Y (2007) A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol 564:26–36. https://doi.org/10.1016/j.ejphar.2007.02.039. (PMID: 10.1016/j.ejphar.2007.02.039) ; Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48:e245. ; Kim B, Seo JH, Lee KY, Park B (2020) Icariin sensitizes human colon cancer cells to TRAIL-induced apoptosis via ERK-mediated upregulation of death receptors. Int J Oncol 56:821–834. https://doi.org/10.3892/ijo.2020.4970. (PMID: 10.3892/ijo.2020.4970) ; Kopp W (2018) Diet-induced hyperinsulinemia as a key factor in the etiology of both benign prostatic hyperplasia and essential hypertension? Nutr Metab Insights 11:117863881877307. https://doi.org/10.1177/1178638818773072. (PMID: 10.1177/1178638818773072) ; Li C, Li Q, Mei Q, Lu T (2015) Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 126:57–68. (PMID: 10.1016/j.lfs.2015.01.006) ; Li C, Yang S, Ma H, et al (2021) Influence of icariin on inflammation, apoptosis, invasion, and tumor immunity in cervical cancer by reducing the TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Cancer Cell Int 21 https://doi.org/10.1186/s12935-021-01910-2. ; Lim R, Barker G, Lappas M (2015) Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators. Placenta 36:454–462. https://doi.org/10.1016/j.placenta.2015.01.007. (PMID: 10.1016/j.placenta.2015.01.007) ; Lin CC, Ng LT, Hsu FF et al (2004) Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol 31:65–69. https://doi.org/10.1111/j.1440-1681.2004.03951.x. (PMID: 10.1111/j.1440-1681.2004.03951.x) ; Liu J, Mattheos N, Su C et al (2018) The effects of icariin on wound healing of extraction sites with administration of zoledronic and dexamethasone: a rat model study. J Oral Pathol Med 47:198–205. https://doi.org/10.1111/jop.12659. (PMID: 10.1111/jop.12659) ; Lu YF, Xu YY, Jin F et al (2014) Icariin is a PPARα activator inducing lipid metabolic gene expression in mice. Molecules 19:18179–18191. https://doi.org/10.3390/molecules191118179. (PMID: 10.3390/molecules191118179) ; Madersbacher S, Sampson N, Culig Z (2019) Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: a mini-review. Gerontology 65:458–464. (PMID: 10.1159/000496289) ; Mahjoub S, Masrour-Roudsari J (2012) Role of oxidative stress in pathogenesis of metabolic syndrome. Casp J Intern Med 3:386–96. ; Makarova MN, Pozharitskaya ON, Shikov AN et al (2007) Effect of lipid-based suspension of Epimedium koreanum Nakai extract on sexual behavior in rats. J Ethnopharmacol 114:412–416. https://doi.org/10.1016/j.jep.2007.08.021. (PMID: 10.1016/j.jep.2007.08.021) ; McClinton S, Miller ID, Eremin O (1990) An immunohistochemical characterisation of the inflammatory cell infiltrate in benign and malignant prostatic disease. Br J Cancer 61:400–403. https://doi.org/10.1038/bjc.1990.87. (PMID: 10.1038/bjc.1990.87) ; Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278. https://doi.org/10.1016/0003-2697(78)90342-1. (PMID: 10.1016/0003-2697(78)90342-1) ; Mosli HH, Esmat A, Atawia RT, et al. (2015) Metformin attenuates testosterone-induced prostatic hyperplasia in rats: a pharmacological perspective. Sci Rep 5 https://doi.org/10.1038/srep15639. ; Ngai HY, Yuen KKS, Ng CM et al (2017) Metabolic syndrome and benign prostatic hyperplasia: an update. Asian J. Urol. 4:164–173. (PMID: 10.1016/j.ajur.2017.05.001) ; Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854. https://doi.org/10.1016/S0006-291X(72)80218-3. (PMID: 10.1016/S0006-291X(72)80218-3) ; Ozden C, Ozdal OL, Urgancioglu G et al (2007) The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur Urol 51:199–206. https://doi.org/10.1016/j.eururo.2006.05.040. (PMID: 10.1016/j.eururo.2006.05.040) ; Reddy P, Lent-Schochet D, Ramakrishnan N et al (2019) Metabolic syndrome is an inflammatory disorder: a conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 496:35–44. (PMID: 10.1016/j.cca.2019.06.019) ; Ribeiro DL, Caldeira EJ, Cândido EM et al (2006) Prostatic stromal microenvironment and experimental diabetes - PubMed. Eur J Histochem 50:51–60. ; Ricke WA, Macoska JA, Cunha GR (2011) Developmental, cellular and molecular biology of benign prostatic hyperplasia. Differentiation 82:165–167. (PMID: 10.1016/j.diff.2011.08.005) ; Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci. 84:705–712. (PMID: 10.1016/j.lfs.2009.02.026) ; Song L, Chen X, Mi L et al (2020) Icariin-induced inhibition of SIRT6/NF-κB triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Sci 111:4242–4256. https://doi.org/10.1111/cas.14648. (PMID: 10.1111/cas.14648) ; Stroup SP, Palazzi-Churas K, Kopp RP, Parsons JK (2012) Trends in adverse events of benign prostatic hyperplasia (BPH) in the USA, 1998 to 2008. BJU Int 109:84–87. https://doi.org/10.1111/j.1464-410X.2011.10250.x. (PMID: 10.1111/j.1464-410X.2011.10250.x) ; Theyer G, Kramer G, Assmann I et al (1992) Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab Invest 66:96–107. ; Tian M, Yang S, Yan X (2018) Icariin reduces human colon carcinoma cell growth and metastasis by enhancing p53 activities. Brazilian J Med Biol Res 51 https://doi.org/10.1590/1414-431X20187151. ; Udensi UK, Tchounwou PB (2016) Oxidative stress in prostate hyperplasia and carcinogenesis. J Exp Clin Cancer Res 35:139. https://doi.org/10.1186/s13046-016-0418-8. (PMID: 10.1186/s13046-016-0418-8) ; Vanella L, Russo GI, Cimino S et al (2014) Correlation between lipid profile and heme oxygenase system in patients with benign prostatic hyperplasia. Urology 83:1444.e7-1444.e13. https://doi.org/10.1016/j.urology.2014.03.007. (PMID: 10.1016/j.urology.2014.03.007) ; Vignozzi L, Gacci M, Maggi M (2016) Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat. Rev. Urol. 13:108–119. (PMID: 10.1038/nrurol.2015.301) ; Wang P, Meng Q, Wang W, et al (2020) Icariin inhibits the inflammation through down-regulating NF-κB/HIF-2α signal pathways in chondrocytes. Biosci Rep 40 https://doi.org/10.1042/BSR20203107. ; Wang Q, Hao J, Pu J et al (2011) Icariin induces apoptosis in mouse MLTC-10 Leydig tumor cells through activation of the mitochondrial pathway and down-regulation of the expression of piwil4. Int J Oncol 39:973–980. https://doi.org/10.3892/ijo.2011.1086. ; Wang ZM, Song N, Ren YL (2015) Anti-proliferative and cytoskeleton-disruptive effects of icariin on HepG2 cells. Mol Med Rep 12:6815–6820. https://doi.org/10.3892/mmr.2015.4282. (PMID: 10.3892/mmr.2015.4282) ; Wu J, Du J, Xu C et al (2011) In vivo and in vitro anti-inflammatory effects of a novel derivative of icariin. Immunopharmacol Immunotoxicol 33:49–54. https://doi.org/10.3109/08923971003725144. (PMID: 10.3109/08923971003725144) ; Wu S, He H, Wang Y et al (2019) Association between benign prostate hyperplasia and metabolic syndrome in men under 60 years old: a meta-analysis. J. Int. Med. Res. 47:5389–5399. (PMID: 10.1177/0300060519876823) ; Xiong Y, Zhang Y, Tan J et al (2021) The association between metabolic syndrome and lower urinary tract symptoms suggestive of benign prostatic hyperplasia in aging males: evidence based on propensity score matching. Transl Androl Urol 10:384–396. ; Xu H, Huang Z (2007) Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul Pharmacol 47:18–24. https://doi.org/10.1016/J.VPH.2007.03.002. (PMID: 10.1016/J.VPH.2007.03.002) ; Bin XuH, Huang ZQ (2007) Vasorelaxant effects of icariin on isolated canine coronary artery. J Cardiovasc Pharmacol 49:207–213. https://doi.org/10.1097/FJC.0b013e3180325abe. (PMID: 10.1097/FJC.0b013e3180325abe) ; Yin Z, Yang JR, Rao JM et al (2015) Association between benign prostatic hyperplasia, body mass index, and metabolic syndrome in Chinese men. Asian J Androl 17:826–830. https://doi.org/10.4103/1008-682X.148081. (PMID: 10.4103/1008-682X.148081) ; Yoon JW, Lee SE, Park YG et al (2021) The antioxidant icariin protects porcine oocytes from age-related damage in vitro. Asian-Australas J Anim Sci 34:546–557. https://doi.org/10.5713/ajas.20.0046. (PMID: 10.5713/ajas.20.0046) ; Zhang J, Zhang M, Tang J et al (2021) Animal models of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 24:49–57. (PMID: 10.1038/s41391-020-00277-1) ; Zhang M, Wang S, Pan Z et al (2018) AMPK/NF-κB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 inflammation. Mol Cell Biochem 437:45–53. https://doi.org/10.1007/s11010-017-3094-x. (PMID: 10.1007/s11010-017-3094-x) ; Zou C, Gong D, Fang N, Fan Y (2016) Meta-analysis of metabolic syndrome and benign prostatic hyperplasia in Chinese patients. World J Urol 34:281–289. https://doi.org/10.1007/s00345-015-1626-0. (PMID: 10.1007/s00345-015-1626-0)
  • Contributed Indexing: Keywords: Adenosine monophosphate (AMP)-activated protein kinase; Benign prostatic hyperplasia; High fructose-drinking water; High-salt diet; Icariin; Metabolic syndrome
  • Substance Nomenclature: 0 (Flavonoids) ; 3XMK78S47O (Testosterone) ; VNM47R2QSQ (icariin)
  • Entry Date(s): Date Created: 20211104 Date Completed: 20220308 Latest Revision: 20220308
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -