Zum Hauptinhalt springen

The genomic origins of the Bronze Age Tarim Basin mummies.

Zhang, F ; Ning, C ; et al.
In: Nature, Jg. 599 (2021-11-01), Heft 7884, S. 256-261
Online academicJournal

Titel:
The genomic origins of the Bronze Age Tarim Basin mummies.
Autor/in / Beteiligte Person: Zhang, F ; Ning, C ; Scott, A ; Fu, Q ; Bjørn, R ; Li, W ; Wei, D ; Wang, W ; Fan, L ; Abuduresule, I ; Hu, X ; Ruan, Q ; Niyazi, A ; Dong, G ; Cao, P ; Liu, F ; Dai, Q ; Feng, X ; Yang, R ; Tang, Z ; Ma, P ; Li, C ; Gao, S ; Xu, Y ; Wu, S ; Wen, S ; Zhu, H ; Zhou, H ; Robbeets, M ; Kumar, V ; Krause, J ; Warinner, C ; Jeong, C ; Cui, Y
Link:
Zeitschrift: Nature, Jg. 599 (2021-11-01), Heft 7884, S. 256-261
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2021
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-021-04052-7
Schlagwort:
  • Agriculture history
  • Animals
  • Cattle
  • China
  • Cultural Characteristics
  • Dental Calculus chemistry
  • Desert Climate
  • Diet history
  • Europe
  • Female
  • Goats
  • Grassland
  • History, Ancient
  • Humans
  • Male
  • Milk Proteins analysis
  • Phylogeography
  • Principal Component Analysis
  • Proteome analysis
  • Proteomics
  • Sheep
  • Whole Genome Sequencing
  • Archaeology
  • Genome, Human genetics
  • Genomics
  • Human Migration history
  • Mummies history
  • Phylogeny
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Historical Article; Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2021 Nov; Vol. 599 (7884), pp. 256-261. <i>Date of Electronic Publication: </i>2021 Oct 27.
  • MeSH Terms: Archaeology* ; Genomics* ; Phylogeny* ; Genome, Human / *genetics ; Human Migration / *history ; Mummies / *history ; Agriculture / history ; Animals ; Cattle ; China ; Cultural Characteristics ; Dental Calculus / chemistry ; Desert Climate ; Diet / history ; Europe ; Female ; Goats ; Grassland ; History, Ancient ; Humans ; Male ; Milk Proteins / analysis ; Phylogeography ; Principal Component Analysis ; Proteome / analysis ; Proteomics ; Sheep ; Whole Genome Sequencing
  • Comments: Comment in: Nature. 2021 Nov;599(7884):204-206. (PMID: 34707262) ; Comment in: Nature. 2021 Nov;599(7883):19-20. (PMID: 34707265)
  • References: Peyrot, M. in Aspects of Globalisation: Mobility, Exchange and the Development of Multi-Cultural States 12–17 (2017). ; Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018). (PMID: 2974367510.1038/s41586-018-0094-2) ; Hemphill, B. E. & Mallory, J. P. Horse-mounted invaders from the Russo-Kazakh steppe or agricultural colonists from western Central Asia? A craniometric investigation of the Bronze Age settlement of Xinjiang. Am. J. Phys. Anthropol. 124, 199–222 (2004). (PMID: 1519781710.1002/ajpa.10354) ; Betts, A., Jia, P. & Abuduresule, I. A new hypothesis for early Bronze Age cultural diversity in Xinjiang, China. Archaeol. Res. Asia 17, 204–213 (2019). (PMID: 10.1016/j.ara.2018.04.001) ; Li, C. et al. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age. BMC Biol. 8, 15 (2010). (PMID: 20163704283883110.1186/1741-7007-8-15) ; Li, C. et al. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China. BMC Genet. 16, 78 (2015). (PMID: 26153446449569010.1186/s12863-015-0237-5) ; Ning, C. et al. Ancient genomes reveal Yamnaya-related ancestry and a potential source of Indo-European speakers in Iron Age Tianshan. Curr. Biol. 29, 2526–2532 (2019). (PMID: 3135318110.1016/j.cub.2019.06.044) ; Zhou, X. et al. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 6, 78–87 (2020). (PMID: 3205504410.1038/s41477-019-0581-y) ; Wang, T. et al. Tianshanbeilu and the isotopic millet road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. Natl Sci. Rev. 6, 1024–1039 (2019). (PMID: 3469196610.1093/nsr/nwx015) ; Zhang, Y. et al. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China. J. Geogr. Sci. 27, 752–768 (2017). (PMID: 10.1007/s11442-017-1404-6) ; Hong, Z., Jian-Wei, W., Qiu-Hong, Z. & Yun-Jiang, Y. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J. Arid Environ. 55, 545–553 (2003). (PMID: 10.1016/S0140-1963(02)00283-5) ; Jia, P. & Betts, A. A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China. J. Indo-Eur. Stud. 38, 275–317 (2010). ; Peyrot, M. The deviant typological profile of the Tocharian branch of Indo-European may be due to Uralic substrate influence. Indo-Eur. Linguist. 7, 72–121 (2019). (PMID: 10.1163/22125892-00701007) ; Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012). (PMID: 22923579411299710.1126/science.1219669) ; Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). (PMID: 2606250710.1038/nature14507) ; Mallory, J. P. & Mair, V. H. The Tarim Mummies: Ancient China and the Mystery of the Earliest Peoples from the West (Thames & Hudson, 2000). ; Barber, E. W. Mummies of Urumchi (W. W. Norton & Co., 1999). ; Mair, V. H. Prehistoric Caucasoid corpses of the Tarim Basin. J. Indo-Euro. Stud. 23, 281–307 (1995). ; Mair, V. H. in The Bronze Age and Early Iron Age Peoples of Eastern Central Asia Vol. 2 835–855 (Institute for the Study of Man and the University of Pennsylvania Museum, 1998). ; Mallory, J. P. The Problem of Tocharian Origins: an Archaeological Perspective (Univ. Pennsylvania Press, 2015). ; Chen, K. & Hiebert, F. T. The late prehistory of Xinjiang in relation to its neighbors. J. World Prehist. 9, 243–300 (1995). (PMID: 10.1007/BF02221840) ; Han, K. Craniometric study on the ancient individuals from the Gumugou site, Xinjiang (in Chinese). Kaogu Xuebao 361–384 (1986). ; Kuzmina, E. E. in Archeology, Migration and Nomadism, Linguistics Vol. 1 63–93 (Univ. Pennsylvania Museum Publications, 1998). ; Li, Y. Agriculture and palaeoeconomy in prehistoric Xinjiang, China (3000–200 BC). Veg. Hist. Archaeobot. 30, 287–303 (2021). (PMID: 10.1007/s00334-020-00774-2) ; Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38 (2012). (PMID: 10.1086/663692) ; Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019). (PMID: 31488661682261910.1126/science.aat7487) ; Feng, Q. et al. Genetic history of Xinjiang’s Uyghurs suggests Bronze Age multiple-way contacts in Eurasia. Mol. Biol. Evol. 34, 2572–2582 (2017). (PMID: 2859534710.1093/molbev/msx177) ; Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255. ; Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. Cell 181, 1232–1245 (2020). (PMID: 3243766110.1016/j.cell.2020.04.037) ; Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell 183, 890–904 (2020). (PMID: 33157037766483610.1016/j.cell.2020.10.015) ; Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). (PMID: 27135931494387810.1038/nature17993) ; Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021). (PMID: 33618348799374910.1038/s41586-021-03336-2) ; Li, J.-F. et al. Buried in sands: environmental analysis at the archaeological site of Xiaohe Cemetery, Xinjiang, China. PLoS ONE 8, e68957 (2013). (PMID: 23894382371881510.1371/journal.pone.0068957) ; Qiu, Z. et al. Paleo-environment and paleo-diet inferred from Early Bronze Age cow dung at Xiaohe Cemetery, Xinjiang, NW China. Quat. Int. 349, 167–177 (2014). (PMID: 10.1016/j.quaint.2014.03.029) ; Yang, Y. et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014). (PMID: 10.1016/j.jas.2014.02.005) ; Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 BP, northwestern China). Quat. Int. 426, 158–165 (2016). (PMID: 10.1016/j.quaint.2016.04.015) ; Yang, R. et al. Investigation of cereal remains at the Xiaohe Cemetery in Xinjiang, China. J. Archaeol. Sci. 49, 42–47 (2014). (PMID: 10.1016/j.jas.2014.04.020) ; Zhang, G. et al. Ancient plant use and palaeoenvironmental analysis at the Gumugou Cemetery, Xinjiang, China: implication from desiccated plant remains. Archaeol. Anthropol. Sci. 9, 145–152 (2017). (PMID: 10.1007/s12520-015-0246-3) ; Yu, J. & He, J. Significant discoveries from the excavation of Jimunai Tongtiandong site (in Chinese). Wenwubao 8 (2017). ; Hollard, C. et al. New genetic evidence of affinities and discontinuities between Bronze Age Siberian populations. Am. J. Phys. Anthropol. 167, 97–107 (2018). (PMID: 2990052910.1002/ajpa.23607) ; Li, C. et al. Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J. Archaeol. Sci. 38, 115–119 (2011). (PMID: 10.1016/j.jas.2010.08.016) ; Stevens, C. J. & Fuller, D. Q. The spread of agriculture in eastern Asia: archaeological bases for hypothetical farmer/language dispersals. Lang. Dyn. Change 7, 152–186 (2017). (PMID: 10.1163/22105832-00702001) ; Abuduresule, I. Archaeological report of Xiaohe cemetery of 2003 (in Chinese). Wenwu 4–42 (2007). ; Abuduresule, Y., Li, W. & Hu, X. in The Cultures of Ancient Xinjiang, Western China: Crossroads of the Silk Roads 19–51 (Archaeopress, 2019). ; Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020). (PMID: 10.1017/RDC.2020.41) ; Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017). (PMID: 10.1017/RDC.2017.108) ; Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013). (PMID: 24019490378578510.1073/pnas.1314445110) ; Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, (2015). ; Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016). (PMID: 27036623481519410.1186/s13059-016-0918-z) ; Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, (2016). ; Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324) ; Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015). (PMID: 25883319444868710.1101/gr.176552.114) ; Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013). (PMID: 23613487369463410.1093/bioinformatics/btt193) ; Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015). (PMID: 26458810460113510.1186/s13059-015-0776-0) ; Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014). (PMID: 25420514424846210.1186/s12859-014-0356-4) ; Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019). (PMID: 31036896654271210.1038/s41559-019-0878-2) ; Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016). (PMID: 27459054500366310.1038/nature19310) ; Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012). (PMID: 22960212352215210.1534/genetics.112.145037) ; Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015). (PMID: 26098372453738610.1038/nature14558) ; Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016). (PMID: 27654912516155710.1038/nature18964) ; Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017). (PMID: 28221340532175910.1038/ncomms14115) ; Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. Preprint at https://doi.org/10.1101/023374 (2015). ; Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). (PMID: 22543367337183210.1093/bioinformatics/bts199) ; Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016). (PMID: 27084951498786910.1093/nar/gkw233) ; Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). (PMID: 17194218171326010.1371/journal.pgen.0020190) ; Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009). (PMID: 19648217275213410.1101/gr.094052.109) ; Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, (2015). ; Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). (PMID: 2425672910.1038/nature12736) ; Ringbauer, H., Novembre, J. & Steinrücken, M. Detecting runs of homozygosity from low-coverage ancient DNA. Preprint at https://doi.org/10.1101/2020.05.31.126912 (2020). ; Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012). (PMID: 22801491361571010.1038/nature11258) ; Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002). (PMID: 1240359710.1021/ac025747h) ; Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003). (PMID: 1463207610.1021/ac0341261)
  • Grant Information: International ERC_ European Research Council
  • Substance Nomenclature: 0 (Milk Proteins) ; 0 (Proteome)
  • Entry Date(s): Date Created: 20211028 Date Completed: 20220131 Latest Revision: 20221030
  • Update Code: 20240513
  • PubMed Central ID: PMC8580821

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -