Zum Hauptinhalt springen

Using DNA sequencing data to quantify T cell fraction and therapy response.

Bentham, R ; Litchfield, K ; et al.
In: Nature, Jg. 597 (2021-09-01), Heft 7877, S. 555-560
Online academicJournal

Titel:
Using DNA sequencing data to quantify T cell fraction and therapy response.
Autor/in / Beteiligte Person: Bentham, R ; Litchfield, K ; Watkins, TBK ; Lim, EL ; Rosenthal, R ; Martínez-Ruiz, C ; Hiley, CT ; Bakir, MA ; Salgado, R ; Moore, DA ; Jamal-Hanjani, M ; Swanton, C ; McGranahan, N
Link:
Zeitschrift: Nature, Jg. 597 (2021-09-01), Heft 7877, S. 555-560
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2021
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-021-03894-5
Schlagwort:
  • Adenocarcinoma of Lung diagnosis
  • Adenocarcinoma of Lung genetics
  • Adenocarcinoma of Lung immunology
  • Adenocarcinoma of Lung therapy
  • Aspartic Acid Endopeptidases genetics
  • Cohort Studies
  • Exome genetics
  • Female
  • Humans
  • Lymphocytes, Tumor-Infiltrating immunology
  • Male
  • Mutation
  • Neoplasms diagnosis
  • Neoplasms genetics
  • Prognosis
  • Receptors, Antigen, T-Cell, alpha-beta genetics
  • Exome Sequencing economics
  • Immunotherapy
  • Neoplasms immunology
  • Neoplasms therapy
  • T-Lymphocytes cytology
  • T-Lymphocytes metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Corporate Authors: TRACERx Consortium
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2021 Sep; Vol. 597 (7877), pp. 555-560. <i>Date of Electronic Publication: </i>2021 Sep 08.
  • MeSH Terms: Immunotherapy* ; Neoplasms / *immunology ; Neoplasms / *therapy ; T-Lymphocytes / *cytology ; T-Lymphocytes / *metabolism ; Adenocarcinoma of Lung / diagnosis ; Adenocarcinoma of Lung / genetics ; Adenocarcinoma of Lung / immunology ; Adenocarcinoma of Lung / therapy ; Aspartic Acid Endopeptidases / genetics ; Cohort Studies ; Exome / genetics ; Female ; Humans ; Lymphocytes, Tumor-Infiltrating / immunology ; Male ; Mutation ; Neoplasms / diagnosis ; Neoplasms / genetics ; Prognosis ; Receptors, Antigen, T-Cell, alpha-beta / genetics ; Exome Sequencing / economics
  • References: Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019). (PMID: 30894752695410010.1038/s41586-019-1032-7) ; Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021). (PMID: 33508232793382410.1016/j.cell.2021.01.002) ; Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011). (PMID: 2163981010.1056/NEJMoa1104621) ; Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015). (PMID: 25667295508916210.1200/JCO.2014.56.2736) ; Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017). (PMID: 28835386567000910.1158/1535-7163.MCT-17-0386) ; Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010). (PMID: 20837533294790710.1073/pnas.1009843107) ; Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015). (PMID: 2531906210.1093/annonc/mdu479) ; Shen, R. & Seshan, V. FACETS: Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing, Dept. Epidemiology and Biostatistics Working Paper Series Vol. 1 No. 50 (Memorial Sloan-Kettering Cancer Center, 2015). ; Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012). (PMID: 22544022438328810.1038/nbt.2203) ; López, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020). (PMID: 32139907711678410.1038/s41588-020-0584-7) ; Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019). (PMID: 31068700669710310.1038/s41586-019-1186-3) ; Levy, E. et al. Immune DNA signature of T-cell infiltration in breast tumor exomes. Sci. Rep. 6, 30064 (2016). (PMID: 27452728495891710.1038/srep30064) ; Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017). (PMID: 2844511210.1056/NEJMoa1616288) ; Danaher, P. et al. Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from The Cancer Genome Atlas (TCGA). J. Immunother. Cancer 6, 1–17 (2018). (PMID: 10.1186/s40425-018-0367-1) ; Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017). (PMID: 28104840559279410.1126/science.aaf8399) ; Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 1–14 (2017). (PMID: 10.1186/s13059-017-1349-1) ; Li, T. et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017). (PMID: 29092952604265210.1158/0008-5472.CAN-17-0307) ; Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). (PMID: 25822800473964010.1038/nmeth.3337) ; Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6, e26476 (2017). (PMID: 29130882571870610.7554/eLife.26476) ; Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012). (PMID: 10.1038/nature11404) ; Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014). (PMID: 10.1038/nature13385) ; Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019). (PMID: 3060279310.1038/s41586-018-0811-x) ; Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020). (PMID: 32214244750045710.1038/s41586-020-2095-1) ; Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020). (PMID: 3287949410.1038/s41586-020-2698-67611706) ; Jongsma, M. L. M. et al. The SPPL3-defined glycosphingolipid repertoire orchestrates HLA class I-mediated immune responses. Immunity 54, 132-150.e9 (2021). (PMID: 3327111910.1016/j.immuni.2020.11.003) ; AbdulJabbar, K. et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 26, 1054–1062 (2020). (PMID: 32461698761084010.1038/s41591-020-0900-x) ; Schwartz, L. H. et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur. J. Cancer 62, 132–137 (2016). (PMID: 27189322573782810.1016/j.ejca.2016.03.081) ; Conforti, F. et al. Sex-based dimorphism of anticancer immune response and molecular mechanisms of immune evasion. Clin. Cancer Res. 27, https://doi.org/10.1158/1078-0432.CCR-21-0136 (2021). ; Capone, I., Marchetti, P., Ascierto, P. A., Malorni, W. & Gabriele, L. Sexual dimorphism of immune responses: a new perspective in cancer immunotherapy. Front. Immunol. 9, 552 (2018). (PMID: 29619026587167310.3389/fimmu.2018.00552) ; van der Spek, J., Groenwold, R. H. H., van der Burg, M. & van Montfrans, J. M. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J. Clin. Immunol. 35, 416–430 (2015). (PMID: 25893636443820410.1007/s10875-015-0152-6) ; Kuchenbecker, L. et al. IMSEQ-A fast and error aware approach to immunogenetic sequence analysis. Bioinformatics 31, 2963–2971 (2015). (PMID: 2598756710.1093/bioinformatics/btv309) ; Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014). (PMID: 24580807405381310.1186/gb-2014-15-3-r46) ; Middleton, G. et al. The National Lung Matrix Trial of personalized therapy in lung cancer. Nature 583, 807–812 (2020). (PMID: 32669708711673210.1038/s41586-020-2481-8) ; Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007). (PMID: 17921354204514910.1101/gr.6861907) ; Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015). (PMID: 26410082491697010.1158/2159-8290.CD-15-0369) ; Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014). (PMID: 24487277463605310.1038/ng.2891) ; Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012). (PMID: 22397650487865310.1056/NEJMoa1113205) ; Harbst, K. et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res. 76, 4765–4774 (2016). (PMID: 2721618610.1158/0008-5472.CAN-15-3476) ; Lamy, P. et al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res. 76, 5894–5906 (2016). (PMID: 2748852610.1158/0008-5472.CAN-16-0436) ; Savas, P. et al. The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program “CASCADE”. PLoS Med. 13, e1002204 (2016). (PMID: 28027312518995610.1371/journal.pmed.1002204) ; Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet. 47, 458–468 (2015). (PMID: 2584875110.1038/ng.3273) ; Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595-610.e11 (2018). (PMID: 29656894593837210.1016/j.cell.2018.03.043) ; Messaoudene, M. et al. T-cell bispecific antibodies in node-positive breast cancer: novel therapeutic avenue for MHC class I loss variants. Ann. Oncol. 30, 934–944 (2019). (PMID: 3092484610.1093/annonc/mdz112) ; Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014). (PMID: 25409260431531910.1056/NEJMoa1406498) ; Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 352, 207–212 (2016). ; Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016). (PMID: 26997480480843710.1016/j.cell.2016.02.065) ; Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934-949.e15 (2017). (PMID: 29033130568555010.1016/j.cell.2017.09.028) ; Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018). (PMID: 30309915671816210.1126/science.aar3593) ; Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, 1–24 (2017). (PMID: 10.1371/journal.pmed.1002309) ; Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018). (PMID: 29443960602824010.1038/nature25501) ; McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018). (PMID: 29867230672189610.1038/s41591-018-0053-3) ; Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015). (PMID: 25765070499315410.1126/science.aaa1348) ; Le, D. T. et al. PD-1 blockade in tumors with mismatch repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). (PMID: 26028255448113610.1056/NEJMoa1500596) ; Shim, J. H. et al. HLA-corrected tumor mutation burden and homologous recombination deficiency for the prediction of response to PD-(L)1 blockade in advanced non-small-cell lung cancer patients. Ann. Oncol. 31, 902–911 (2020). (PMID: 3232075410.1016/j.annonc.2020.04.004) ; Hendry, S. et al. Assessing tumor-infiltrating lymphocytes in solid tumors. Adv. Anat. Pathol. 24, 235–251 (2017). (PMID: 28777142556444810.1097/PAP.0000000000000162) ; Denkert, C. et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: Results of the ring studies of the international immuno-oncology biomarker working group. Mod. Pathol. 29, 1155–1164 (2016). (PMID: 2736349110.1038/modpathol.2016.109)
  • Grant Information: 19278 United Kingdom CRUK_ Cancer Research UK; MR/L016311/1 United Kingdom MRC_ Medical Research Council; MR/P014712/1 United Kingdom MRC_ Medical Research Council; 25223 United Kingdom CRUK_ Cancer Research UK; 25253 United Kingdom CRUK_ Cancer Research UK; 20466 United Kingdom CRUK_ Cancer Research UK; 17786 United Kingdom CRUK_ Cancer Research UK; 30025 United Kingdom CRUK_ Cancer Research UK; 30194 United Kingdom CRUK_ Cancer Research UK; MR/V033077/1 United Kingdom MRC_ Medical Research Council; 24956 United Kingdom CRUK_ Cancer Research UK; 211179/Z/18/Z United Kingdom WT_ Wellcome Trust
  • Contributed Indexing: Investigator: NJ Birkbak; M Escudero; A Stewart; A Rowan; J Goldman; P Van Loo; RK Stone; T Denner; E Nye; S Ward; S Boeing; M Greco; J Nicod; C Puttick; K Enfield; E Colliver; B Campbell; AM Frankell; D Cook; M Angelova; A Magness; C Bailey; A Toncheva; K Dijkstra; J Kisistok; M Sokac; O Pich; J Demeulemeester; EL Cadieux; C Castignani; K Thakkar; H Fu; T Karasaki; O Al-Sawaf; MS Hill; C Abbosh; Y Wu; S Veeriah; RE Hynds; A Georgiou; M Werner Sunderland; JL Reading; SA Quezada; KS Peggs; T Marafioti; JA Hartley; HL Lowe; L Ensell; V Spanswick; A Karamani; D Biswas; S Beck; O Chervova; M Tanic; A Huebner; M Dietzen; JRM Black; C Naceur-Lombardelli; MA Akther; H Zhai; N Kanu; S Summan; F Gimeno-Valiente; K Chen; E Manzano; S Kaur Bola; E Ghorani; MR de Massy; E Hoxha; E Hatipoglu; B Chain; DR Pearce; J Herrero; S Zaccaria; J Lester; F Morgan; M Kornaszewska; R Attanoos; H Adams; H Davies; JA Shaw; J Riley; L Primrose; D Fennell; A Nakas; S Rathinam; R Plummer; R Boyles; M Tufail; A Bajaj; J Brozik; K Ang; MF Chowdhry; W Monteiro; H Marshall; A Dawson; S Busacca; D Marrone; C Smith; G Anand; S Khan; G Price; M Khalil; K Kerr; S Richardson; H Cheyne; J Miller; K Buchan; M Chetty; S Dubois-Marshall; S Lock; K Gilbert; B Naidu; G Langman; H Bancroft; S Kadiri; G Middleton; M Djearaman; A Osman; H Shackleford; A Patel; A Leek; N Totten; JD Hodgkinson; J Rogan; K Moore; R Waddington; R Califano; R Shah; P Krysiak; K Rammohan; E Fontaine; R Booton; M Evison; S Moss; J Novasio; L Joseph; P Bishop; A Chaturvedi; H Doran; F Granato; V Joshi; E Smith; A Montero; P Crosbie; F Blackhall; L Priest; MG Krebs; C Dive; DG Rothwell; A Kerr; E Kilgour; K Baker; M Carter; CR Lindsay; F Gomes; J Tugwood; J Pierce; A Clipson; R Schwarz; TL Kaufmann; M Huska; Z Szallasi; I Csabai; M Diossy; H Aerts; C Fekete; G Royle; C Veiga; M Skrzypski; D Lawrence; M Hayward; N Panagiotopoulos; R George; D Patrini; M Falzon; E Borg; R Khiroya; A Ahmed; M Taylor; J Choudhary; SM Janes; M Forster; T Ahmad; SM Lee; N Navani; D Papadatos-Pastos; M Scarci; P Gorman; E Bertoja; RCM Stephens; EM Hoogenboom; JW Holding; S Bandula; R Thakrar; R Anand; K Selvaraju; J Wilson; S Hessey; P Ashford; M Shah; MV Duran; M MacKenzie; M Wilcox; A Hackshaw; Y Ngai; A Sharp; C Rodrigues; O Pressey; S Smith; N Gower; HK Dhanda; K Chan; S Chakraborty; C Ottensmeier; S Chee; B Johnson; A Alzetani; J Cave; L Scarlett; E Shaw; E Lim; P De Sousa; S Jordan; A Rice; H Raubenheimer; H Bhayani; M Hamilton; L Ambrose; A Devaraj; H Chavan; S Begum; SI Buderi; D Kaniu; M Malima; S Booth; AG Nicholson; N Fernandes; C Deeley; P Shah; C Proli; K Lau; M Sheaff; P Schmid; L Lim; J Conibear; M Hewish; S Danson; J Bury; J Edwards; J Hill; S Matthews; Y Kitsanta; J Rao; S Tenconi; L Socci; K Suvarna; F Kibutu; P Fisher; R Young; J Barker; F Taylor; K Lloyd; M Shackcloth; J Asante-Siaw; J Gosney; T Light; T Horey; P Russell; D Papadatos-Pastos; KG Blyth; C Dick; A Kidd; A Kirk; M Asif; J Butler; R Bilancia; N Kostoulas; M Thomas; GA Wilson
  • Substance Nomenclature: 0 (Receptors, Antigen, T-Cell, alpha-beta) ; EC 3.4.23.- (Aspartic Acid Endopeptidases) ; EC 3.4.23.- (signal peptide peptidase like 3, human)
  • Entry Date(s): Date Created: 20210909 Date Completed: 20220204 Latest Revision: 20240306
  • Update Code: 20240306

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -