Zum Hauptinhalt springen

VvANR silencing promotes expression of VvANS and accumulation of anthocyanin in grape berries.

Yang, B ; Wei, Y ; et al.
In: Protoplasma, Jg. 259 (2022-05-01), Heft 3, S. 743-753
Online academicJournal

Titel:
VvANR silencing promotes expression of VvANS and accumulation of anthocyanin in grape berries.
Autor/in / Beteiligte Person: Yang, B ; Wei, Y ; Liang, C ; Guo, J ; Niu, T ; Zhang, P ; Wen, P
Link:
Zeitschrift: Protoplasma, Jg. 259 (2022-05-01), Heft 3, S. 743-753
Veröffentlichung: <1998->: Wien ; New York : Springer ; <i>Original Publication</i>: Leipzig : Verlag von Gebrüder Borntraeger, 1927-, 2022
Medientyp: academicJournal
ISSN: 1615-6102 (electronic)
DOI: 10.1007/s00709-021-01698-y
Schlagwort:
  • Anthocyanins metabolism
  • Fruit genetics
  • Fruit metabolism
  • Gene Expression Regulation, Plant
  • Transcriptional Activation
  • Vitis metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Protoplasma] 2022 May; Vol. 259 (3), pp. 743-753. <i>Date of Electronic Publication: </i>2021 Aug 26.
  • MeSH Terms: Vitis* / metabolism ; Anthocyanins / metabolism ; Fruit / genetics ; Fruit / metabolism ; Gene Expression Regulation, Plant ; Transcriptional Activation
  • References: Aharoni A, Vos CHRD, Wein M, Sun Z, O’Connell AP (2010) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332. (PMID: 10.1046/j.1365-313X.2001.01154.x) ; Amr A, Al-Tamimi E (2007) Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colourants. Int J Food Sci Tech 42:985–991. (PMID: 10.1111/j.1365-2621.2006.01334.x) ; Becker A, Lange M (2010) VIGS—genomics goes functional. Trends Plant Sci 15:1–4. (PMID: 10.1016/j.tplants.2009.09.002) ; Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663. (PMID: 10.1104/pp.105.064238) ; Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361. (PMID: 10.1104/pp.106.093203) ; Bogs J, Ebadi A, Mcdavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291. (PMID: 10.1104/pp.105.073262) ; Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569. (PMID: 10.1007/BF00019111) ; Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. (PMID: 10.1016/0003-2697(76)90527-3) ; Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089. (PMID: 10.1093/jxb/err207) ; Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J Exp Bot 63:2655–2665. (PMID: 10.1093/jxb/err449) ; Czemmel S, Heppel SC, Bogs J (2012) R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 249:109–118. (PMID: 10.1007/s00709-012-0380-z) ; Dellus V, Heller W, Sandermann H, Scalbert A (1997) Dihydroflavonol 4-reductase activity in lignocellulosic tissues. Phytochemistry 45:1415–1418. (PMID: 10.1016/S0031-9422(97)00128-3) ; Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, Kwon S, Nelson RS (2018) An improved brome mosaic virus silencing vector: greater insert stability and more extensive VIGS. Plant Physiol 176:496–510. (PMID: 10.1104/pp.17.00905) ; Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:1–8. (PMID: 10.1186/1758-907X-3-5) ; Fu DQ, Zhu BZ, Zhu HL, Zhang HX, Xie YH, Jiang WB, Luo YB (2006) Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cells 21:153–160. (PMID: 10.1016/j.molcel.2005.11.029) ; Gargouri M, Manigand C, Chloé M, Granier T, d’Estaintot BL, Cala O, Pianet I, Bathany K, Chaudièrea J, Galloisa B (2009) Structure and epimerase activity of anthocyanidin reductase from vitis vinifera. Acta Crystallogr A 65:989–1000. ; Gowri R, Avendano EE, Chen SY, Wang JQ, Julia M, Bridget G, Novotny JA, Aedín C (2019) Dietary intakes of flavan-3-ols and cardiometabolic health: systematic review and meta-analysis of randomized trials and prospective cohort studies. Am J Clin Nutr 110:1067–1078. (PMID: 10.1093/ajcn/nqz178) ; Huang C, Qian Y, Li Z, Zhou X (2012) Virus-induced gene silencing and its application in plant functional genomics. Sci China Life Sci 55:99–108. (PMID: 10.1007/s11427-012-4280-4) ; Huang YF, Vialet S, Guiraud JL, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) A negative myb regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in thegrape berry. New Phytol 201:795–809. (PMID: 10.1111/nph.12557) ; Ido Y, Nakahara KS, Uyeda I (2012) White clover mosaic virus-induced gene silencing in pea. J Gen Plant Pathol 78:127–132. (PMID: 10.1007/s10327-012-0360-3) ; Jarugula S, Willie K, Stewart LR (2018) Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings. Virus Genes 54:616–620. (PMID: 10.1007/s11262-018-1569-9) ; Kim J, Park M, Jeong ES, Lee JM, Choi D (2017) Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Meth 13:1–10. (PMID: 10.1186/s13007-016-0151-5) ; Kurth EG, Peremyslov VV, Prokhnevsky AI, Kasschau KD, Miller M, Carrington JC, Dolja VV (2012) Virus-derived gene expression and RNA interference vector for grapevine. J Virol 86:6002–6009. (PMID: 10.1128/JVI.00436-12) ; Lange M, Yellina AL, Orashakova S, Becker A (2013) Virus-induced gene silencing (VIGS) in plants: An overview of target species and the virus-derived vector systems. Methods Mol Biol 975:1–14. (PMID: 10.1007/978-1-62703-278-0_1) ; Li CH (2015) The accumulation of catechin and epicatechin, expression of anthocyanidin reductase induced by UV-C irradiation in grape berry. Shanxi Agricultural University, 15 (in Chinese). ; Li G, Zhao J, Qin B, Yin Y, Cao Y (2019) ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in lycium plants. BMC Plant Biol 19:1–13. (PMID: 10.1186/s12870-018-1600-2) ; Li L, Zhu B, Fu D, Luo Y (2011) RIN transcription factor plays an important role in ethylene biosynthesis of tomato fruit ripening. J Sci Food Agr 91:2308–2314. (PMID: 10.1002/jsfa.4475) ; Ma CM, Sato N, Li XY, Nakamura N, Hattori M (2010) Flavan-3-ol contents, anti-oxidative and α-glucosidase inhibitory activities of Cynomorium songaricum. Food Chem 118:116–119. (PMID: 10.1016/j.foodchem.2009.04.083) ; Maged AF, Amin M, Osman H, Nada LAM (2018) Optical absorption spectroscopy of the blackberry dye applied in solar cell sensitizers and gamma radiation effects. Arab J Nucl Sci Appl 51(3):130–138. ; Murugantham M, Moskovitz Y, Haviv S, Horesh T, Fenigstein A, Preez JD, Stephan D, Burger JT, Mawassi M (2009) Grapevine virusa-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods 155:167–174. (PMID: 10.1016/j.jviromet.2008.10.010) ; Naing AH, Kyu SY, Pe PPW, Park KI, Lee JM, Lim KB, Kim KC (2019) Silencing of the phytoene desaturase (PDS) gene affects the expression of fruit-ripening genes in tomatoes. Plant Meth 15:1679–1683. ; Ottaviani JI, Carrasquedo F, Keen CL, Lazarus SA, Schmitz HH, Fraga CG (2002) Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in isolated DNA. Arch Biochem Biophys 406:203–208. (PMID: 10.1016/S0003-9861(02)00455-1) ; Padmanabhan MS, Dinesh-Kumar SP (2008) Virus-induced gene silencing (VIGS). Encyclop Virol 3:123–131. ; Qi XL, Li M, Liu CL, Song LL (2018) Construction of TRV-mediated virus induced gene silencing(VIGS) system in sweet cherry fruit. Journal of Fruit Science 35:3–9 (in Chinese). ; Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR (2007) Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng 9:95–111. (PMID: 10.1016/j.ymben.2006.09.003) ; Romero I, Tikunov Y, Bovy A (2011) Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing. J Plant Physiol 168:1129–1135. (PMID: 10.1016/j.jplph.2010.12.020) ; Saito K, Kobayashi M, Gong ZZ, Tanaka Y, Yamazaki M (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J 17:181–189. (PMID: 10.1046/j.1365-313X.1999.00365.x) ; Senthil-Kumar M, Lee HK, Mysore KS (2013) VIGS-mediated forward genetics screening for identification of genesinvolved in nonhost resistance. JoVE 78:1–10. ; Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665. (PMID: 10.1016/j.tplants.2011.08.006) ; Simone DC, Gabriele DG, Raffaella M, Alberto N, Enrico P, Sophie P, Anne-Francoise AB, Raffaele T (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genom 7:1–17. (PMID: 10.1186/1471-2164-7-1) ; Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants-purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656. (PMID: 10.1074/jbc.M302783200) ; Thill J, Regos I, Farag MA, Ahmad AF, Kusek J, Castro A, Schlangen K, Carbonero CH, Gadjev IZ, Smith LMJ, Halbwirth H, Treutter D, Stich K (2012) Polyphenol metabolism provides a screening tool for beneficial effects of Onobrychis viciifolia (sainfoin). Phytochemistry 82:67–80. (PMID: 10.1016/j.phytochem.2012.05.030) ; Tian J, Pei HX, Zhang S, Chen JW, Chen W, Yang RY, Meng YL, You J, Gao JP, Ma N (2014) TRV-GFP: a modified tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65:311–322. (PMID: 10.1093/jxb/ert381) ; Vashisth T, Johnson LK, Malladi A (2011) An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Rep 30:2167–2176. (PMID: 10.1007/s00299-011-1121-z) ; Wang H, Chang XX, Lin J, Chang Y, Jiang CZ (2018) Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Hort Res 5:453–480. ; Wen PF, Ji W, Gao MY, Niu TQ, Xing YF, Niu XY (2015) Accumulation of flavanols and expression of leucoanthocyanidin reductase induced by postharvest UV-C irradiation in grape berry. Genet Mol Res 14:7687–7695. (PMID: 10.4238/2015.July.13.14) ; Wen PF, Xing YF, Niu TQ, Gao MY, Niu XY (2012) Accumulation of flavanols, expression of leucoanthocyanidin reductase induced by UV-C irradiation during grape berry development. Scientia Agricultura Sinica 45:4428–4436 (in Chinese). ; Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399. (PMID: 10.1126/science.1078540) ; Xie YH, Zhu BZ, Yang XL, Zhang HX, Fu DQ, Zhu HL, Shao Y, Li YC, Gao HY, Luo YB (2006) Delay of postharvest ripening and senescence of tomato fruit through virus-induced leACS2 gene silencing. Postharvest Biol Tec 42:8–15. (PMID: 10.1016/j.postharvbio.2006.04.016) ; Yan HJ, Shi SC, Ma N, Cao XQ, Zhang H, Qiu XQ, Wang QG, Jian HY, Zhou NN, Zhang Z, Tang KX (2018) Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. J Integr Plant Biol 60:34–44. (PMID: 10.1111/jipb.12599) ; Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000. (PMID: 10.1105/tpc.104.023614) ; Zhang B, Shi JA, Chen JB, Li DD, Li JJ, Guo HL, Zong JQ, Wang Y, Guo AG, Liu JX (2016) Efficient virus-induced gene silencing in Cynodon dactylon and Zoysia japonica using rice tungro bacilliform virus vectors. Sci Hortic 207:97–103. (PMID: 10.1016/j.scienta.2016.05.030) ; Zhang PF, Dong YM, Wen HY, Liang CM, Niu TQ, Gao Y, Zhang XJ, Wen PF (2019) Knockdown of VvMYBA1 via virus-induced gene silencing decreases anthocyanin biosynthesis in grape berries. Can J Plant Sci 100:175–184. (PMID: 10.1139/cjps-2018-0322) ; Zhang XL, Liu YJ, Gao KJ, Zhao L, Liu L, Wang YS, Sun ML, Gao LP, Xia T (2012) Characterisation of anthocyanidin reductase from Shuchazao green tea. J Sci Food Agr 92:1533–1539. (PMID: 10.1002/jsfa.4739) ; Zheng XT, Chen YL, Zhang XH, Cai ML, Yu ZC, Peng CL (2019) ANS-deficient Arabidopsis is sensitive to high light due to impaired anthocyanin photoprotection. Funct Plant Biol. https://doi.org/10.1071/FP19042. (PMID: 10.1071/FP19042)
  • Grant Information: 31372013 National Natural Science Founation of China; 201803D211016-4 Key Research and Development Program Key Projects Scientific and Technological Project of Shanxi Province; 201901D111222 Natural Science Foundation of Shanxi Province
  • Contributed Indexing: Keywords: Flavan-3-ol; Grape berries; VIGS; VvANR; VvANS
  • Substance Nomenclature: 0 (Anthocyanins)
  • Entry Date(s): Date Created: 20210827 Date Completed: 20220418 Latest Revision: 20220418
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -