Zum Hauptinhalt springen

Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria).

Aibeche, C ; Selami, N ; et al.
In: International microbiology : the official journal of the Spanish Society for Microbiology, Jg. 25 (2022), Heft 1, S. 61
Online academicJournal

Titel:
Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria).
Autor/in / Beteiligte Person: Aibeche, C ; Selami, N ; Zitouni-Haouar, FE ; Oeunzar, K ; Addou, A ; Kaid-Harche, M ; Djabeur, A
Link:
Zeitschrift: International microbiology : the official journal of the Spanish Society for Microbiology, Jg. 25 (2022), Heft 1, S. 61
Veröffentlichung: 2018- : Switzerland AG : Springer Nature ; <i>Original Publication</i>: Barcelona, Spain : Springer, c1998-, 2022
Medientyp: academicJournal
ISSN: 1618-1905 (electronic)
DOI: 10.1007/s10123-021-00191-z
Schlagwort:
  • Algeria
  • Biodegradation, Environmental
  • Phylogeny
  • Water
  • Lakes
  • Metals, Heavy analysis
  • Metals, Heavy toxicity
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Int Microbiol] 2022 Jan; Vol. 25 (1), pp. 61-73. <i>Date of Electronic Publication: </i>2021 Jul 06.
  • MeSH Terms: Lakes* ; Metals, Heavy* / analysis ; Metals, Heavy* / toxicity ; Algeria ; Biodegradation, Environmental ; Phylogeny ; Water
  • References: Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu 2+ . Biotechnol Lett 23:2027–2034. https://doi.org/10.1023/A:1013739232093. (PMID: 10.1023/A:1013739232093) ; Akinbile CO, Yusoff MS, Talib SHA, Hasan ZA, Haque AMM, Samsudin UB (2013) Qualitative analysis and classification of surface water in Bukit Merah reservoir in Malaysia. Water Sci Technol 13:1138–1145. https://doi.org/10.2166/ws.2013.104. (PMID: 10.2166/ws.2013.104) ; Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389. (PMID: 10.1093/nar/25.17.33899254694146917) ; Ammar E, Ueno S (1999) Connaissances de base pour la lutte contre la pollution des eaux usées. Association Japonaise pour le contrôle et la protection de l’environnement industriel (AJCPEI), Sfax, pp 55– 182. ; Askwith CC, De Silva D, Kaplan J (1996) Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol 20:27–34. https://doi.org/10.1111/j.1365-2958.1996.tb02485.x. (PMID: 10.1111/j.1365-2958.1996.tb02485.x8861201) ; Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:1–16. https://doi.org/10.3390/ijerph14010094. (PMID: 10.3390/ijerph14010094) ; Balsalobre L, De-Siloniz MI, Validerrama MJ, Benito T, Larrea MT, Peinado JM (2003) Occurrence of yeasts in municipal wastes and their behaviour in presence of cadmium copper and zinc. J Basic Microbiol 43:185–193. https://doi.org/10.1002/jobm.200390021. (PMID: 10.1002/jobm.20039002112761769) ; Bendjama A, Djabrib L, Chouchanea T, Boukari A, Tlili S (2014) La contamination métallique des eaux lacustres des zones humides du PNEK située au Nord-Est algérien. Actes de la conférence internationale sur l’énergétique appliquée et la pollution. Décembre 14–15. Constantine. ; Benmalek Y, Fardeau ML (2016) Isolation and characterization of metal-resistant bacterial strain from wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cell. Int J Environ Sci Technol 13:2153–2162. https://doi.org/10.1007/s13762-016-1048-6. (PMID: 10.1007/s13762-016-1048-6) ; Brunker RL (1976) Mercurial toxicity in yeast: evidence for catabolic pathway inhibition. Appl Environ Microbiol 32(4):498–504. (PMID: 10.1128/aem.32.4.498-504.1976) ; Burgaud G, Coton M, Jacques N, Debaets S, Maciel NOP, Rosa CA, Gadanho M, Sampaio JP, Casaregola S (2016) Yamadazyma barbieri f.a. sp. nov., an ascomycetous anamorphic yeast isolated from a Mid-Atlantic Ridge hydrothermal site (2300 m) and marine coastal water. Int J Syst Evol Micr 66:3600–3606. https://doi.org/10.1099/ijsem.0.001239. (PMID: 10.1099/ijsem.0.001239) ; Bussche JV, Soares EV (2011) Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:679–687. https://doi.org/10.1007/s00253-010-3056-7. (PMID: 10.1007/s00253-010-3056-721191789) ; Chatterjee S, Gupta D, Roy P, Chatterjee CN, Saha P, Dutta S (2011) Study of a lead tolerant yeast strain BUSCY1 (MTCC9315). Afr J Microbiol Res 5:5362–5372. https://doi.org/10.5897/AJMR11.853. (PMID: 10.5897/AJMR11.853) ; Chen C, Wang JL (2007) Response of Saccharomyces cerevisiae to lead ion stress. Appl Microbiol Biotechnol 74:683–687. https://doi.org/10.1007/s00253-006-0678-x. (PMID: 10.1007/s00253-006-0678-x17476503) ; Cho DH, Kim EY (2003) Characterization of Pb +2 bioadsorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277. https://doi.org/10.1007/s00449-002-0315-8. (PMID: 10.1007/s00449-002-0315-814505170) ; Cho DH, Yoo MH, Kim EY (2004) Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol 14:250–255. ; Coelho MA, Almeida JMF, Martins IM, Jorge da Silva A, Sampaio JP (2010) The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts. Antonie Van Leeuw 98:331–342. https://doi.org/10.1007/s10482-010-9445-1. (PMID: 10.1007/s10482-010-9445-1) ; Dahiya S, Tripathi RM, Hegde AG (2008) Biosorption of lead and copper from aqueous solutions by pretreated crab and arca shell biomass. Bioresour Technol 99(1):179–187. https://doi.org/10.1016/j.biortech.2006.11.011. (PMID: 10.1016/j.biortech.2006.11.01117234403) ; D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763. https://doi.org/10.3852/08-184. (PMID: 10.3852/08-18419927741) ; De Almeida JMGCF (2005) Yeasts community survey in the Tagus estuary. FEMS Microb Ecol 53(2):295–303. https://doi.org/10.1016/j.femsec.2005.01.006. (PMID: 10.1016/j.femsec.2005.01.006) ; El-Shahawi MS, Hamza A, Bashammakhb AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597. https://doi.org/10.1016/j.talanta.2009.09.055. (PMID: 10.1016/j.talanta.2009.09.05520152382) ; Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem 6:119–130. https://doi.org/10.1007/s40090-015-0038-8. (PMID: 10.1007/s40090-015-0038-8) ; Fernández PM, Cabral ME, Delgado OD, Fariña JI, Figueroa LIC (2013) Textile dye polluted waters as an unusual source for selecting chromate-reducing yeasts through Cr (VI)-enriched microcosms. Int Biodeterior Biodegrad 79:28–35. https://doi.org/10.1016/j.ibiod.2013.01.009. (PMID: 10.1016/j.ibiod.2013.01.009) ; Ferraz AI, Teixeira JA (1999) The use of flocculating brewer’s yeast for Cr (III) and Pb (II) removal from residual wastewaters. Bioprocess Eng 21:431–437. https://doi.org/10.1007/PL00009083. (PMID: 10.1007/PL00009083) ; Gadd GM, Mowll JL, White C, Newby PJ (1986) Methods for assessment of heavy metal toxicity towards fungi and yeasts. Tox Assess 1:169–185. https://doi.org/10.1002/tox.2540010204. (PMID: 10.1002/tox.2540010204) ; García-Béjar B, Arévalo-Villena M, Guisantes-Batan E, Rodríguez-Flores J, Briones A (2020) Study of the bioremediatory capacity of wild yeasts. Sci Rep 10:11265. https://doi.org/10.1038/s41598-020-68154-4. (PMID: 10.1038/s41598-020-68154-4326472907347596) ; Garcia-Cortes A, Garcia-Vásquez JA, Aranguren Y, Ramirez-Castrillon M (2021) Pigment production improvement in Rhodotorula mucilaginosa AJB01 using design of experiments. Microorganisms 9:387. https://doi.org/10.3390/microorganisms9020387. (PMID: 10.3390/microorganisms9020387336728787918216) ; Heide-Marie D, Moons MC, Huret S, Vrancken G, De Vuyst L (2011) Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie Van Leeuw 99:63–73. https://doi.org/10.1007/s10482-010-9517-2. (PMID: 10.1007/s10482-010-9517-2) ; Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene 57(2–3):267–272. (PMID: 10.1016/0378-1119(87)90131-4) ; Irawati W, Parhusip AJN, Christian Yuwono ST (2017) The potential capability of bacteria and yeast strains isolated from Rungkut Industrial Sewage in Indonesia as a bioaccumulators and biosorbents of copper. Biodiversitas 18(3):971–977. https://doi.org/10.13057/biodiv/d180315. (PMID: 10.13057/biodiv/d180315) ; Jiang BH, Zhao Y, Zhao X, Hu XM, Li L (2015) Examination of Pb2+ bio-sorption onto Rhodotorula mucilaginosa using response surface methodology. Water Sci Technol 72:810–816. https://doi.org/10.2166/wst.2015.275. (PMID: 10.2166/wst.2015.27526287841) ; Kan GF, Wang XF, Jiang J, Zhang CS, Chi ML, Ju Y, Shi CJ (2018) Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice. Antarctic Microbiology Open 1–18:e00657. https://doi.org/10.1002/mbo3.657. (PMID: 10.1002/mbo3.657) ; Khazaal SH, Al-Azawi KF, Eassa HA, Khasraghi AH, Alfatlawi WR, Al-Gebori AM (2019) Study the level of some heavy metals in water of Lake Habbaniyah in Al-Anbar-Iraq. Energy Procedia 157:68–74. https://doi.org/10.1016/j.egypro.2018.11.165. (PMID: 10.1016/j.egypro.2018.11.165) ; Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A (2016) Effects of selenium on morphological changes in Candida utilis ATCC 9950 yeast cells. Biol Trace Elem Res 69:387–393. https://doi.org/10.1007/s12011-015-0415-3. (PMID: 10.1007/s12011-015-0415-3) ; Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581. (PMID: 10.1007/BF017315817463489) ; Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054. (PMID: 10.1093/molbev/msw05482108238210823) ; Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study. Elsevier Science Publishers, Amsterdam., p 1076. ; Lepp NW (2012) Effect of heavy metal pollution on plants. Metals in the environment, Pollution monitoring series, Applied Science Publishers, Department of Biology. Liverpool, United Kingdom. Liverpool Polytechnic. ; Li J, Jianga Z, Chena S, Wanga T, Jianga L, Wanga M, Sb W, Lia Z (2019) Biochemical changes of polysaccharides and proteins within EPS under Pb (II) stress in Rhodotorula mucilaginosa. Ecotoxicol Environ Saf 174:484–490. https://doi.org/10.1016/j.ecoenv.2019.03.004. (PMID: 10.1016/j.ecoenv.2019.03.00430856560) ; Li L, He Y (2020) Adsorption characteristics and mechanism of Pb2+ by Wickerhamomyces anomalus QF-1-1, with high Pb2+ adsorption capacity. Shipin Kexue/food Science 41:152–158. https://doi.org/10.7506/spkx1002-6630-20191031-349. (PMID: 10.7506/spkx1002-6630-20191031-349) ; Libkind D, Brizzio S, Van Broock M (2004) Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol 49:19–25. https://doi.org/10.1007/bf02931640. (PMID: 10.1007/bf02931640) ; Libkind D, Brizzio S, Ruffini A, Gadanho M, Van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuw 84:313–322. https://doi.org/10.1023/A:1026058116545. (PMID: 10.1023/A:1026058116545) ; Libkind D, Gadanho M, Broock MV, Sampaio JP (2008) Studies on the heterogeneity of the carotenogenic yeast Rhodotorula mucilaginosa from Patagonia, Argentina. J Basic Microbiol 48:93–98. https://doi.org/10.1002/jobm.200700257. (PMID: 10.1002/jobm.20070025718383231) ; Lopez-Archilla A, Gonzalez A, Terron M, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934. https://doi.org/10.1139/w04-089. (PMID: 10.1139/w04-08915644909) ; Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872. https://doi.org/10.1007/s13762-013-0299-8. (PMID: 10.1007/s13762-013-0299-8) ; Melgar MJ, Alonso J, Garcia MA (2007) Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci Total Environ 385:12–19. https://doi.org/10.1016/j.scitotenv.2007.07.011. (PMID: 10.1016/j.scitotenv.2007.07.01117692896) ; Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, Espínola F (2012) Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chem Eng J 210:325–332. https://doi.org/10.1016/j.cej.2012.09.007. (PMID: 10.1016/j.cej.2012.09.007) ; Naito Y, Okai M, Ishida M, Takashio M, Urano N (2019) Bioethanol production from molasses by yeasts with stress-tolerance isolated from aquatic environments in Japan. Adv Microbiol 9:1000–1011. https://doi.org/10.4236/aim.2019.912065. (PMID: 10.4236/aim.2019.912065) ; O’Donnell K (1993) Fusarium and its near relatives. In The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Edited by D. R. Reynolds & J. W. Taylor. Wallingford, UK: CAB International. pp. 225–233. ; Oyetibo GO, Ishola S, Ikeda-Ohtsubo W, Miyauchi K, Ilori MO, Endo G (2014) Mercury bioremoval by Yarrowia strains isolated from sediments of mercury-polluted estuarine water. Appl Microbiol Biotechnol 99:3651–3657. https://doi.org/10.1007/s00253-014-6279-1. (PMID: 10.1007/s00253-014-6279-1255201684375293) ; Parameswari E, Lakshmanan A, Thilagavathi T (2010) Biosorption and metal tolerance potential filamentous fungi isolated from metal polluted ecosystem. Elec J Env Agricult Food Chem 9:664–671. ; Pérez-Brito D, Magaña-Alvarez A, Lappe-Oliveras P, Cortes-Velazquez A, Torres-Calzada C, Herrera-Suarez T, Larqué-Saavedra A, Tapia-Tussell R (2015) Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting. J Microbiol 53:14–20. https://doi.org/10.1007/s12275-015-4373-4. (PMID: 10.1007/s12275-015-4373-425557477) ; Polonelli L, Archibusacci C, Sestito M, Morace G (1983) Killer system: a simple method for differentiating Candida albicans strains. J Clin Microbiol 17: 774–780. https://doi.org/10.1128/JCM.17.5.774-780.1983. ; Ramirez-Ramirez R, Calvo-Mendez C, Avila-Rodriguez M, Lappe P, Ulloa M, Vazquez-Juarez R, Gutierrez Corono F (2004) Cr (VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek 85:63–68. https://doi.org/10.1023/B:ANTO.0000020151.22858.7f. (PMID: 10.1023/B:ANTO.0000020151.22858.7f15028877) ; Rehman A, Anjum MS (2010) Cadmium uptake by yeast, Candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations. Water Air Soil Pollut 205:149–159. https://doi.org/10.1007/s11270-009-0062-4. (PMID: 10.1007/s11270-009-0062-4) ; Rehman A, Anjum MS (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174:585–595. https://doi.org/10.1007/s10661-010-1480-x. (PMID: 10.1007/s10661-010-1480-x20499163) ; Restuccia C, Lombardo M, Scavo A, Mauromicale G, Cirvilleri G (2020) Combined application of antagonistic Wickerhamomyces anomalus BS91 strain and Cynara cardunculus L. leaf extracts for the control of postharvest decay of citrus fruit. Food Microbiology 92: 103583. https://doi.org/10.1016/j.fm.2020.103583. ; Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D (2020) Bioremediation methods for the recovery of lead-contaminated soils: a review. Appl Sci 10:3528. https://doi.org/10.3390/app10103528. (PMID: 10.3390/app10103528) ; Rossbach S, Wilson T, Kukuk M, Carty H (2000) Elevated zinc induces siderophore biosynthesis genes and zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191:61–70. https://doi.org/10.1111/j.1574-6968.2000.tb09320.x. (PMID: 10.1111/j.1574-6968.2000.tb09320.x11004401) ; Salinas E, De Orellano ME, Rezza I, Martinez L, Marchesvky E, De Tosetti MS (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Technol 72:107–112. https://doi.org/10.1016/S0960-8524(99)00111-X. (PMID: 10.1016/S0960-8524(99)00111-X) ; Shakoori AR, Huma ZI, Dar N, Shahid SA (2005) Lead resistant yeast from industrial waste water capable of decontaminating it of heavy metals. Pak J Zool 37:1–11. ; Silva-Bedoya LM, Ramírez-Castrillón M, Osorio-Cadavid E (2014) Yeast diversity associated to sediments and water from two Colombian artificial lakes. Braz J Microbiol 45:135–142. https://doi.org/10.1590/S1517-83822014005000035. (PMID: 10.1590/S1517-83822014005000035249489244059288) ; Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MBL (2013) Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 30:93–101. https://doi.org/10.1002/yea.2943. (PMID: 10.1002/yea.294323456725) ; Skountzou P, Soupioni M, Bekatorou A, Kanellaki M, Koutinas A, Marchant R, Banat I (2003) Lead (II) uptake during baker’s yeast production by aerobic fermentation of molasses. Process Biochem 38:1479–1482. https://doi.org/10.1016/S0032-9592(03)00023-2. (PMID: 10.1016/S0032-9592(03)00023-2) ; Sousa CA, Perez RR, Soares EV (2014) Saccharomyces cerevisiae mutants affected in vacuole assembly or vacuolar H+-ATPase are hypersensitive to lead (Pb) toxicity. Curr Microbiol 68:113–119. https://doi.org/10.1007/s00284-013-0438-y. (PMID: 10.1007/s00284-013-0438-y24013611) ; Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97:1167–1173. https://doi.org/10.1016/j.biortech.2005.05.012. (PMID: 10.1016/j.biortech.2005.05.01216023341) ; Sun GL, Reynolds EE, Belcher AM (2020) Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat Sustain 3:303–311. https://doi.org/10.1038/s41893-020-0478-9. (PMID: 10.1038/s41893-020-0478-9) ; Tamasi G, Cini R (2004) Heavy metals in drinking waters from Mount Amiata. Possible risks from arsenic for public health in the province of Siena. Sci Total Environ 327:41–51. https://doi.org/10.1016/j.scitotenv.2003.10.011. (PMID: 10.1016/j.scitotenv.2003.10.01115172570) ; Tarekegn MM, Salilih FZ, IshetuAI, (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cognent Food Agri 6:1783174. https://doi.org/10.1080/01490451.2020.1817198. (PMID: 10.1080/01490451.2020.1817198) ; Tkáčová J, Furdíková K, Klempová T, Ďurčanská K, Čertík M (2015) Screening of carotenoid-producing Rhodotorula strains isolated from natural sources. Acta Chim Slov 8:34–38. https://doi.org/10.1515/acs-2015-0007. (PMID: 10.1515/acs-2015-0007) ; Vadkertiova R, Slavikova E (2006) Metal tolerance of yeasts isolated from water, soil and plant environments. J Basic Microbiol 46:145–152. https://doi.org/10.1002/jobm.200510609. (PMID: 10.1002/jobm.20051060916598828) ; Van der Heggen M, Martins S, Flores G, Soares EV (2010) Lead toxicity in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:1355–1361. https://doi.org/10.1007/s00253-010-2799-5. (PMID: 10.1007/s00253-010-2799-520809078) ; Villegas L, Amoroso MJ, Figueroa LIC (2004) Selection of tolerant heavy metal yeasts from different polluted sites. In: Spencer JFT, Spencer ALR (eds) Methods in biotechnology. Environmental biology, methods in protocols. Humana Press Inc Totowa pp 16: 249–256. ; Villegas L, Fernandez PM, Amoroso MJ, de Figueroa LIC (2008) Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. Biometals 21:591–600. https://doi.org/10.1007/s10534-008-9145-8. (PMID: 10.1007/s10534-008-9145-818528763) ; Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, Du B, Li H (2012) Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem Eng J 184:132–140. https://doi.org/10.1016/j.cej.2012.01.016. (PMID: 10.1016/j.cej.2012.01.016) ; Yuan XF, Tang CC (1999) DNA damage and repair in yeast (Saccharomyces cerevisiae) cells exposed to lead. J. Environ. Sci Health Part A-Toxic/hazard Subst Environ Eng 34:1117–1128. https://doi.org/10.1080/10934529909376885. (PMID: 10.1080/10934529909376885) ; Zhang Y, Fan C, Meng Q, Diao Z, Dong L, Peng X, Ma S, Zhou Q (2009) Biosorption of Pb2+ by Saccharomyces cerevisiae in static and dynamic adsorption tests. Bull Environ Contam Toxicol 83:708–712. https://doi.org/10.1007/s00128-009-9847-9. (PMID: 10.1007/s00128-009-9847-919693421) ; Zhao Y, Guo L, Xia Y, Zhuang X, Chu W (2019) Isolation, identification of carotenoid-producing Rhodotorula sp. from marine environment and optimization for carotenoid production. Mar Drugs 17,161. https://doi.org/10.3390/md17030161.
  • Contributed Indexing: Keywords: Autochthonous yeast; Dayet Oum Ghellaz Lake water; Heavy metal; Lead removal
  • Substance Nomenclature: 0 (Metals, Heavy) ; 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20210706 Date Completed: 20220118 Latest Revision: 20220118
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -