Zum Hauptinhalt springen

Icariin reduces Glu-induced excitatory neurotoxicity via antioxidative and antiapoptotic pathways in SH-SY5Y cells.

Zheng, XX ; Li, YC ; et al.
In: Phytotherapy research : PTR, Jg. 35 (2021-06-01), Heft 6, S. 3377-3389
Online academicJournal

Titel:
Icariin reduces Glu-induced excitatory neurotoxicity via antioxidative and antiapoptotic pathways in SH-SY5Y cells.
Autor/in / Beteiligte Person: Zheng, XX ; Li, YC ; Yang, KL ; He, ZX ; Wang, ZL ; Wang, X ; Jing, HL ; Cao, YJ
Link:
Zeitschrift: Phytotherapy research : PTR, Jg. 35 (2021-06-01), Heft 6, S. 3377-3389
Veröffentlichung: <June 1990-> : Chichester : Wiley ; <i>Original Publication</i>: London : Heyden & Son, c1987-, 2021
Medientyp: academicJournal
ISSN: 1099-1573 (electronic)
DOI: 10.1002/ptr.7057
Schlagwort:
  • Caspase 3 metabolism
  • Cell Line, Tumor
  • Cell Survival drug effects
  • Glutamic Acid pharmacology
  • Humans
  • Membrane Potential, Mitochondrial drug effects
  • Nitric Oxide Synthase Type II metabolism
  • Proto-Oncogene Proteins c-bcl-2 metabolism
  • Reactive Oxygen Species metabolism
  • Antioxidants pharmacology
  • Apoptosis drug effects
  • Flavonoids pharmacology
  • Oxidative Stress drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Phytother Res] 2021 Jun; Vol. 35 (6), pp. 3377-3389. <i>Date of Electronic Publication: </i>2021 Apr 23.
  • MeSH Terms: Antioxidants / *pharmacology ; Apoptosis / *drug effects ; Flavonoids / *pharmacology ; Oxidative Stress / *drug effects ; Caspase 3 / metabolism ; Cell Line, Tumor ; Cell Survival / drug effects ; Glutamic Acid / pharmacology ; Humans ; Membrane Potential, Mitochondrial / drug effects ; Nitric Oxide Synthase Type II / metabolism ; Proto-Oncogene Proteins c-bcl-2 / metabolism ; Reactive Oxygen Species / metabolism
  • References: Albrecht, P., Lewerenz, J., Dittmer, S., Noack, R., Maher, P., & Methner, A. (2010). Mechanisms of oxidative glutamate toxicity: The glutamate/cyctine antiporter system xc-as a neuroprotective drug target. CNS & Neurological Disorders Drug Targets, 9, 373-382. ; Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy, 74, 101-110. ; Cassano, T., Pace, L., Bedse, G., Lavecchia, A. M., De Marco, F., Gaetani, S., & Serviddio, G. (2016). Glutamate and mitochondria: Two prominent players in the oxidative stress-induced neurodegeneration. Current Alzheimer Research, 13, 185-197. ; Choi, D. W., Koh, J. Y., & Peters, S. (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. Journal of Neuroscience Research, 8, 185-196. ; Gao, M., Zhang, W. C., Liu, Q. S., Hu, J. J., Liu, G. T., & Du, G. H. (2008). Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. European Journal of Pharmacology, 591, 73-79. ; Gegelashvili, G., & Bjerrum, O. J. (2019). Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology, 161, 107623. ; Karch, J., & Molkentin, J. D. (2015). Regulated necrotic cell death: The passive aggressive side of Bax and Bak. Circulation Research, 116, 1800-1809. ; Kim, E. K., & Choi, E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta, 1802, 396-405. ; Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., & Vavilis, T. D. (2015). Researching glutamate-induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Frontiers in Cellular Neuroscience, 9, 91. ; Lai, T. W., Zhang, S., & Wang, Y. T. (2014). Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology, 115, 157-188. ; Lee, M. S., Chao, J., Yen, J. C., Lin, L. W., Tsai, F. S., Hsieh, M. T., … Cheng, H. Y. (2012). Schizandrin protects primary rat cortical cell cultures from glutamate-induced apoptosis by inhibiting activation of the MAPK family and the mitochondria dependent pathway. Molecules, 18, 354-372. ; Li, H. F., Han, W. J., Wang, H. Y., Ding, F., Xiao, L. Y., Shi, R. N., … Huang, Z. B. (2017). Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells. Oxidative Medicine and Cellular Longevity, 2017, 4517486. ; Lin, X. T., Zhao, Y., & Li, S. H. (2017). Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. European Journal of Pharmacology, 806, 43-51. ; Lv, C., Yuan, X., Zeng, H. W., Liu, R. H., & Zhang, W. D. (2017). Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells. European Journal of Pharmacology, 815, 487-494. ; Maher, P., Kv, L., Dey, P. N., Honrath, B., Dolga, A., & Methner, A. (2018). The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 70, 47-55. ; Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R., & Sharma, P. L. (2013). Excitotoxicity: Bridge to various triggers in neurodegenerative disorder. European Journal of Pharmacology, 698(1-3), 6-18. ; Meng, L. S., Li, B., Li, D. N., Wang, Y. H., Lin, Y., Meng, X. J., … Liu, N. (2017). Cyanidin-3-O-glucoside attenuates amyloid-beta (1-40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. Journal of Functional Foods, 38, 474-485. ; Mota, S. I., Ferreira, I. L., & Rego, A. C. (2014). Dysfunctional synapse in Alzheimer's disease-a focus on NMDA receptors. Neuropharmacology, 76, 16-26. ; Pearson, G., Robinson, F., Gibson, T. B., Xu, B. E., Karandikar, M., Berman, K., & Cobb, M. H. (2000). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153-183. ; Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2011). The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews. Neuroscience, 13, 22-37. ; Rodenak-Kladniew, B., Castro, A., Stärkel, P., Saeger, C. D., MGd, B., & Crespo, R. (2018). Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sciences, 199, 48-59. ; Sabogal-Guáqueta, A. M., Hobbie, F., Keerthi, A., Oun, A., Kortholt, A., Boddeke, E., & Dolga, A. (2019). Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomedicine & Pharmacotherapy, 118, 109295. ; Santa-Catalina, M. O., Bermejo, M. C., Argenta, R., Alonso, J. C., Centenob, F., & Lorenzo, M. J. (2017). JNK signaling pathway regulates sorbitol-induced tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3. Archives of Biochemistry and Biophysics, 636, 42-49. ; Schelman, W. R., Andres, R. D., Sipe, K. J., Kang, E., & Weyhenmeyer, J. A. (2004). Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line. Brain Research. Molecular Brain Research, 128, 160-169. ; Scofield, M. D. (2018). Exploring the role of astroglial glutamate release and association with synapses in neuronal function and behavior. Biological Psychiatry, 84, 778-786. ; Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G., & Pae, H. O. (2011). Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? Journal of Signal Transduction, 2011, 792639. ; Wan, G. Q., Li, D. D., Huang, C., Lu, D. S., Zhang, C., Zhou, S. Y., … Zhang, F. (2018). Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro. Frontiers in Molecular Neuroscience, 10, 441. ; Wu, Y. B., Chen, M. Q., & Jiang, J. L. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35-45. ; Xu, J., Kurup, P., Zhang, Y. F., Goebel-Goody, S. M., Wu, P. H., Hawasli, A. H., … Lombroso, P. J. (2009). Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. The Journal of Neuroscience, 29, 9330-9343. ; Zheng, M., Qu, L. H., & Lou, Y. J. (2008). Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat. Phytotherapy Research, 22, 597-604.
  • Grant Information: 31600822 National Natural Science Foundation of China; 81773870 National Natural Science Foundation of China; 2020JM-440 Natural Science Foundation of Shaanxi Province; ZSK2019001 Open Fund for Key Laboratories of the Ministry of Education of Resources Biology and Modern Biotechnology in Western China; 2019324 The Educational Reform project and Student's Platform for Innovation and Entrepreneurship Training Program of China and Northwest University; 2019345 The Educational Reform project and Student's Platform for Innovation and Entrepreneurship Training Program of China and Northwest University; XM05191249 The Educational Reform project and Student's Platform for Innovation and Entrepreneurship Training Program of China and Northwest University
  • Contributed Indexing: Keywords: Icariin; NADPH oxidase; SH-SY5Y; apoptosis; excitotoxicity; glutamate
  • Substance Nomenclature: 0 (Antioxidants) ; 0 (BCL2 protein, human) ; 0 (Flavonoids) ; 0 (Proto-Oncogene Proteins c-bcl-2) ; 0 (Reactive Oxygen Species) ; 3KX376GY7L (Glutamic Acid) ; EC 1.14.13.39 (NOS2 protein, human) ; EC 1.14.13.39 (Nitric Oxide Synthase Type II) ; EC 3.4.22.- (CASP3 protein, human) ; EC 3.4.22.- (Caspase 3) ; VNM47R2QSQ (icariin)
  • Entry Date(s): Date Created: 20210423 Date Completed: 20210629 Latest Revision: 20210629
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -