Zum Hauptinhalt springen

Developmental and biophysical determinants of grass leaf size worldwide.

Baird, AS ; Taylor, SH ; et al.
In: Nature, Jg. 592 (2021-04-01), Heft 7853, S. 242-247
Online academicJournal

Titel:
Developmental and biophysical determinants of grass leaf size worldwide.
Autor/in / Beteiligte Person: Baird, AS ; Taylor, SH ; Pasquet-Kok, J ; Vuong, C ; Zhang, Y ; Watcharamongkol, T ; Scoffoni, C ; Edwards, EJ ; Christin, PA ; Osborne, CP ; Sack, L
Link:
Zeitschrift: Nature, Jg. 592 (2021-04-01), Heft 7853, S. 242-247
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2021
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-021-03370-0
Schlagwort:
  • Biophysical Phenomena
  • Climate
  • Cold Temperature
  • Droughts
  • Plant Leaves anatomy & histology
  • Plant Leaves metabolism
  • Poaceae anatomy & histology
  • Poaceae metabolism
  • Xylem anatomy & histology
  • Xylem metabolism
  • Acclimatization
  • Climate Change
  • Plant Leaves growth & development
  • Poaceae growth & development
  • Water metabolism
  • Xylem growth & development
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Nature] 2021 Apr; Vol. 592 (7853), pp. 242-247. <i>Date of Electronic Publication: </i>2021 Mar 24.
  • MeSH Terms: Acclimatization* ; Climate Change* ; Plant Leaves / *growth & development ; Poaceae / *growth & development ; Water / *metabolism ; Xylem / *growth & development ; Biophysical Phenomena ; Climate ; Cold Temperature ; Droughts ; Plant Leaves / anatomy & histology ; Plant Leaves / metabolism ; Poaceae / anatomy & histology ; Poaceae / metabolism ; Xylem / anatomy & histology ; Xylem / metabolism
  • References: Hort, A. Enquiry into Plants, Vol. I, by Theophrastus (Harvard Univ. Press, 1948). ; Peppe, D. J. et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol. 190, 724–739 (2011). (PMID: 2129473510.1111/j.1469-8137.2010.03615.x) ; Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017). (PMID: 2886038410.1126/science.aal4760) ; Gates, D. M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19, 211–238 (1968). (PMID: 10.1146/annurev.pp.19.060168.001235) ; Sack, L. et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3, 837 (2012). (PMID: 2258829910.1038/ncomms1835) ; Sack, L. & Scoffoni, C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013). (PMID: 2360047810.1111/nph.12253) ; Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010). (PMID: 2060349610.1126/science.1184984) ; Gallaher, T. J. et al. Leaf shape and size track habitat transitions across forest-grassland boundaries in the grass family (Poaceae). Evolution 73, 927–946 (2019). (PMID: 3087430210.1111/evo.13722) ; Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J. Syst. Evol. 55, 259–290 (2017). (PMID: 10.1111/jse.12262) ; Schuepp, P. H. Tansley review no. 59 leaf boundary layers. New Phytol. 125, 477–507 (1993). (PMID: 3387458410.1111/j.1469-8137.1993.tb03898.x) ; Orians, G. H. & Solbrig, O. T. A cost–income model of leaves and roots with special reference to arid and semiarid areas. Am. Nat. 111, 677–690 (1977). (PMID: 10.1086/283199) ; Körner, C. Plant adaptation to cold climates. F1000Res. 5, 2769 (2016). (PMID: 10.12688/f1000research.9107.1) ; Niklas, K. J. Plant Allometry: The Scaling of Form and Process (Univ. Chicago Press, 1994). ; Nelson, T. & Dengler, N. Leaf vascular pattern formation. Plant Cell 9, 1121–1135 (1997). (PMID: 1223737815698510.1105/tpc.9.7.1121) ; Christin, P. A. et al. Anatomical enablers and the evolution of C 4 photosynthesis in grasses. Proc. Natl Acad. Sci. USA 110, 1381–1386 (2013). (PMID: 2326711610.1073/pnas.1216777110) ; Ueno, O., Kawano, Y., Wakayama, M. & Takeda, T. Leaf vascular systems in C 3 and C 4 grasses: a two-dimensional analysis. Ann. Bot. 97, 611–621 (2006). (PMID: 16464879280365610.1093/aob/mcl010) ; Sage, R. F. The evolution of C 4 photosynthesis. New Phytol. 161, 341–370 (2004). (PMID: 3387349810.1111/j.1469-8137.2004.00974.x) ; Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase–The Online World Grass Flora  http://www.kew.org/data/grasses-db.html (2006). ; Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972). (PMID: 10.2307/2258359) ; Okajima, Y., Taneda, H., Noguchi, K. & Terashima, I. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol. Res. 27, 333–346 (2012). (PMID: 10.1007/s11284-011-0905-5) ; Davis, S. D., Sperry, J. S. & Hacke, U. G. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot. 86, 1367–1372 (1999). (PMID: 1052327810.2307/2656919) ; Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010). (PMID: 2073878510.1111/j.1469-8137.2010.03439.x) ; Scoffoni, C., Rawls, M., McKown, A., Cochard, H. & Sack, L. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol. 156, 832–843 (2011). (PMID: 21511989317727910.1104/pp.111.173856) ; Scoffoni, C. et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 213, 1076–1092 (2017). (PMID: 2786192610.1111/nph.14256) ; Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Chang. 3, 63–67 (2013). (PMID: 10.1038/nclimate1634) ; Scoffoni, C. et al. Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants 2, 16072 (2016). (PMID: 2725583610.1038/nplants.2016.72) ; Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology 3rd edn (Cambridge Univ. Press, 2014). ; Grace, J. Plant–Atmosphere Relationships 1st edn (Chapman and Hall, 1983). ; Weiser, R. L., Asrar, G., Miller, G. P. & Kanemasu, E. T. Assessing grassland biophysical characteristics from spectral measurements. Remote Sens. Environ. 20, 141–152 (1986). (PMID: 10.1016/0034-4257(86)90019-2) ; Meinzer, F. C. & Grantz, D. A. Stomatal control of transpiration from a developing sugarcane canopy. Plant Cell Environ. 12, 635–642 (1989). (PMID: 10.1111/j.1365-3040.1989.tb01232.x) ; Liu, H. et al. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C 3 and C 4 species. J. Exp. Bot. 70, 1567–1580 (2019). (PMID: 30753647641138310.1093/jxb/ery462) ; Fort, F., Jouany, C. & Cruz, P. Root and leaf functional trait relations in Poaceae species: Implications of differing resource-acquisition strategies. J. Plant Ecol. 6, 211–219 (2013). (PMID: 10.1093/jpe/rts034) ; Holloway-Phillips, M. M. & Brodribb, T. J. Contrasting hydraulic regulation in closely related forage grasses: implications for plant water use. Funct. Plant Biol. 38, 594–605 (2011). (PMID: 3248091210.1071/FP11029) ; Brodribb, T. J., Feild, T. S. & Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. 37, 488–498 (2010). (PMID: 10.1071/FP10010) ; Linacre, E. T. Further notes on a feature of leaf and air temperatures. Archiv Meteorol. Geophys. Bioklimatol. B 15, 422–436 (1967). (PMID: 10.1007/BF02390453) ; John, G. P. et al. The anatomical and compositional basis of leaf mass per area. Ecol. Lett. 20, 412–425 (2017). (PMID: 2819807610.1111/ele.12739) ; Givnish, T. J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 106, 131–160 (1987). (PMID: 10.1111/j.1469-8137.1987.tb04687.x) ; Lusk, C. H., Grierson, E. R. P. & Laughlin, D. C. Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytol. 223, 1319–1327 (2019). (PMID: 3098594310.1111/nph.15849) ; Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018). (PMID: 29967148605517710.1073/pnas.1721728115) ; Niklas, K. J. A mechanical perspective on foliage leaf form and function. New Phytol. 143, 19–31 (1999). (PMID: 10.1046/j.1469-8137.1999.00441.x) ; Merkhofer, L. et al. Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. Am. J. Bot. 102, 1160–1173 (2015). (PMID: 2619937110.3732/ajb.1500159) ; Somerville, C. The billion-ton biofuels vision. Science 312, 1277 (2006). (PMID: 1674107810.1126/science.1130034) ; Sedelnikova, O. V., Hughes, T. E. & Langdale, J. A. Understanding the genetic basis of C 4 kranz anatomy with a view to engineering C 3 crops. Annu. Rev. Genet. 52, 249–270 (2018). (PMID: 3020829310.1146/annurev-genet-120417-031217) ; Sage, R. F. & Zhu, X. G. Exploiting the engine of C 4 photosynthesis. J. Exp. Bot. 62, 2989–3000 (2011). (PMID: 2165253310.1093/jxb/err179) ; Feldman, A. B. et al. Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Front. Plant Sci. 8, 1883 (2017). (PMID: 29163607567278710.3389/fpls.2017.01883) ; Edwards, E. J. et al. The origins of C 4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010). (PMID: 2043100810.1126/science.1177216) ; Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. Camb. Philos. Soc. 93, 1125–1144 (2018). (PMID: 2923092110.1111/brv.12388) ; Kluyver, T. A. & Osborne, C. P. Taxonome: a software package for linking biological species data. Ecol. Evol. 3, 1262–1265 (2013). (PMID: 23762512367848010.1002/ece3.529) ; Cayuela, L., Granzow-de la Cerda, I., Albuquerque, F. S. & Golicher, D. J. TAXONSTAND: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012). (PMID: 10.1111/j.2041-210X.2012.00232.x) ; Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). (PMID: 10.1002/joc.5086) ; Cherlet, M. H. C., Reynolds, J., Hill, J., Sommer, S. & von Maltitz, G. World Atlas of Desertification 3rd edn (Publication Office of the European Union, 2018). ; Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014). (PMID: 10.1002/joc.3711) ; Lasky, J. R. et al. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21, 5512–5529 (2012). (PMID: 2285770910.1111/j.1365-294X.2012.05709.x) ; Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009). (PMID: 10.1146/annurev.ecolsys.110308.120317) ; Dengler, N. G., Dengler, R. E. & Hattersley, P. W. Differing ontogenetic origins of PCR (Kranz) sheaths in leaf blades of C 4 grasses (Poaceae). Am. J. Bot. 72, 284–302 (1985). (PMID: 10.1002/j.1537-2197.1985.tb08293.x) ; Dengler, N. G., Woodvine, M. A., Donnelly, P. M. & Dengler, R. E. Formation of vascular pattern in developing leaves of the C 4 grass Arundinella hirta. Int. J. Plant Sci. 158, 1–12 (1997). (PMID: 10.1086/297408) ; Ikenberry, G.-J. J. Developmental Vegetative Morphology of Avena sativa. PhD thesis, Iowa State Univ. (1959). ; Kaufman, P. B. & Brock, T. G. in Oat Science and Technology (eds Marshall, H. G. & Sorrells, M. E.) 53–75 (American Society of Agronomy, 1992). ; Hitch, P. A. & Sharman, B. C. Initiation of procambial strands in leaf primordia of Dactylis glomerata L as an example of a temperate herbage grass. Ann. Bot. 32, 153–164 (1968). (PMID: 10.1093/oxfordjournals.aob.a084189) ; Davidson, J. L. & Milthorpe, F. L. Leaf growth in Dactylis glomerata following defoliation. Ann. Bot. 30, 173–184 (1966). (PMID: 10.1093/oxfordjournals.aob.a084065) ; Volenec, J. J. & Nelson, C. J. Cell dynamics in leaf meristems of contrasting tall fescue genotypes. Crop Sci. 21, 381–385 (1981). (PMID: 10.2135/cropsci1981.0011183X002100030007x) ; Macadam, J. W. & Nelson, C. J. Specific leaf weight in zones of cell division, elongation and maturation in tall fescue leaf blades. Ann. Bot. 59, 369–376 (1987). (PMID: 10.1093/oxfordjournals.aob.a087326) ; MacAdam, J. W., Volenec, J. J. & Nelson, C. J. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol. 89, 549–556 (1989). (PMID: 16666581105588010.1104/pp.89.2.549) ; Skinner, R. H. & Nelson, C. J. Elongation of the grass leaf and its relationship to the phyllochron. Crop Sci. 35, 4–10 (1995). (PMID: 10.2135/cropsci1995.0011183X003500010002x) ; Skinner, R. H. & Nelson, C. J. Epidermal cell division and the coordination of leaf and tiller development. Ann. Bot. 74, 9–15 (1994). (PMID: 1970045710.1006/anbo.1994.1088) ; Maurice, I., Gastal, F. & Durand, J. L. Generation of form and associated mass deposition during leaf development in grasses: a kinematic approach for non-steady growth. Ann. Bot. 80, 673–683 (1997). (PMID: 10.1006/anbo.1997.0514) ; Durand, J. L., Schaufele, R. & Gastal, F. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Ann. Bot. 83, 577–588 (1999). (PMID: 10.1006/anbo.1999.0864) ; Martre, P., Durand, J. L. & Cochard, H. Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytol. 146, 235–247 (2000). (PMID: 3386297810.1046/j.1469-8137.2000.00641.x) ; Martre, P. & Durand, J. L. Quantitative analysis of vasculature in the leaves of Festuca arundinacea (Poaceae): Implications for axial water transport. Int. J. Plant Sci. 162, 755–766 (2001). (PMID: 10.1086/320786) ; Gallagher, J. N. Field studies of cereal leaf growth 1. Initiation and expansion in relation to temperature and ontogeny. J. Exp. Bot. 30, 625–636 (1979). (PMID: 10.1093/jxb/30.4.625) ; Gallagher, J. N. & Biscoe, P. V. Field studies of cereal leaf growth 3. Barley leaf extension in relation to temperature, orradiance, and water potential. J. Exp. Bot. 30, 645–655 (1979). (PMID: 10.1093/jxb/30.4.645) ; Dannenhoffer, J. M., Ebert, W. & Evert, R. F. Leaf vasculature in barley, Hordeum vulgare (Poaceae). Am. J. Bot. 77, 636–652 (1990). (PMID: 10.1002/j.1537-2197.1990.tb14449.x) ; Dannenhoffer, J. M. & Evert, R. F. Development of the vascular system in the leaf of barley (Hordeum vulgare L). Int. J. Plant Sci. 155, 143–157 (1994). (PMID: 10.1086/297153) ; Trivett, C. L. & Evert, R. F. Ontogeny of the vascular bundles and contiguous tissues in the barley leaf blade. Int. J. Plant Sci. 159, 716–723 (1998). (PMID: 10.1086/297589) ; Soper, K. & Mitchell, K. J. The developmental anatomy of perennial ryegrass (Lolium perenne L.). N. Z. J. Sci. Technol. 37, 484–504 (1956). ; Schnyder, H., Nelson, C. J. & Coutts, J. H. Assessment of spatial distribution of growth in the elongation zone of grass leaf blades. Plant Physiol. 85, 290–293 (1987). (PMID: 16665672105424310.1104/pp.85.1.290) ; Arredondo, J. T. & Schnyder, H. Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. New Phytol. 158, 305–314 (2003). (PMID: 10.1046/j.1469-8137.2003.00745.x) ; Kaufman, P. B. Development of the shoot of Oryza sativa L. – II. Leaf histogenesis. Phytomorphology 9, 277–311 (1959). ; Yamazaki, K. Studies on the leaf formation in rice plants: I. Observation on the successive development of the leaf. Jpn. J. Crop. Sci. 31, 371–378 (1963). (PMID: 10.1626/jcs.31.371) ; Chonan, N. K. H. & Matsuda, T. Morphology on vascular bundles of leaves in gramineous crops: I. Observations on vascular bundles of leaf blades, sheaths and internodes in riceplants. Jpn. J. Crop. Sci. 43, 425–432 (1974). (PMID: 10.1626/jcs.43.425) ; Hoshikawa, K. The Growing Rice Plant: An Anatomical Monograph (Nobunkyo, 1989). ; Matsukura, C. et al. Transverse vein differentiation associated with gas space formation – fate of the middle cell layer in leaf sheath development of rice. Ann. Bot. 85, 19–27 (2000). (PMID: 10.1006/anbo.1999.0993) ; Itoh, J. et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23–47 (2005). (PMID: 1565943510.1093/pcp/pci501) ; Sakaguchi, J. & Fukuda, H. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays). J. Plant Res. 121, 593–602 (2008). (PMID: 1893202310.1007/s10265-008-0189-1) ; Parent, B., Conejero, G. & Tardieu, F. Spatial and temporal analysis of non-steady elongation of rice leaves. Plant Cell Environ. 32, 1561–1572 (2009). (PMID: 1962756710.1111/j.1365-3040.2009.02020.x) ; Begg, J. E. & Wright, M. J. Growth and development of leaves from intercalary meristems in Phalaris arundinacea L. Nature 194, 1097–1098 (1962). (PMID: 10.1038/1941097a0) ; Colbert, J. T. & Evert, R. F. Leaf vasculature in sugarcane (Saccharum officinarum L.). Planta 156, 136–151 (1982). (PMID: 2427230910.1007/BF00395428) ; Bernstein, N., Silk, W. K. & Lauchli, A. Growth and development of sorghum leaves under conditions of NaCl stress – spatial and temporal aspects of leaf growth inhibition. Planta 191, 433–439 (1993). (PMID: 10.1007/BF00195744) ; Sud, R. M. & Dengler, N. G. Cell lineage of vein formation in variegated leaves of the C 4 grass Stenotaphrum secundatum. Ann. Bot. 86, 99–112 (2000). (PMID: 10.1006/anbo.2000.1165) ; Sharman, B. C. & Hitch, P. A. Initiation of procambial strands in leaf primordia of bread wheat Triticum aestivum L. Ann. Bot. 31, 229–243 (1967). (PMID: 10.1093/oxfordjournals.aob.a084135) ; Blackman, E. The morphology and development of cross veins in the leaves of bread wheat (Triticum aestivum L.). Ann. Bot. 35, 653–665 (1971). (PMID: 10.1093/oxfordjournals.aob.a084510) ; Kemp, D. R. The location and size of the extension zone of emerging wheat leaves. New Phytol. 84, 729–737 (1980). (PMID: 10.1111/j.1469-8137.1980.tb04785.x) ; Paolillo, D. J. Protoxylem maturation in the seedling leaf of wheat. Am. J. Bot. 82, 337–345 (1995). (PMID: 10.1002/j.1537-2197.1995.tb12638.x) ; Beemster, G. T. S. & Masle, J. The role of apical development around the time of leaf initiation in determining leaf width at maturity in wheat seedlings (Triticum aestivum L.) with impeded roots. J. Exp. Bot. 47, 1679–1688 (1996). (PMID: 10.1093/jxb/47.11.1679) ; Sharman, B. C. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6, 245–282 (1942). (PMID: 10.1093/oxfordjournals.aob.a088407) ; Esau, K. Ontogeny of the vascular bundle in Zea mays. Hilgardia 15, 325–368 (1943). (PMID: 10.3733/hilg.v15n03p325) ; Bosabalidis, A. M., Evert, R. F. & Russin, W. A. Ontogeny of the vascular bundles and contiguous tissues in the maize leaf blade. Am. J. Bot. 81, 745–752 (1994). (PMID: 10.1002/j.1537-2197.1994.tb15509.x) ; Poethig, S. in Contemporary Problems in Plant Anatomy (eds Dickison R. A. & White, W. C.) 235–259 (Academic, 1984). ; Russell, S. H. & Evert, R. F. Leaf vasculature in Zea mays L. Planta 164, 448–458 (1985). (PMID: 2424821710.1007/BF00395960) ; Smith, L. G., Greene, B., Veit, B. & Hake, S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116, 21–30 (1992). (PMID: 136238110.1242/dev.116.1.21) ; Fournier, C. & Andrieu, B. A 3D architectural and process-based model of maize development. Ann. Bot. 81, 233–250 (1998). (PMID: 10.1006/anbo.1997.0549) ; Muller, B., Reymond, M. & Tardieu, F. The elongation rate at the base of a maize leaf shows an invariant pattern during both the steady-state elongation and the establishment of the elongation zone. J. Exp. Bot. 52, 1259–1268 (2001). (PMID: 1143294410.1093/jexbot/52.359.1259) ; Muller, B. et al. Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol. 143, 278–290 (2007). (PMID: 17098857176197210.1104/pp.106.087494) ; Johnston, R., Leiboff, S. & Scanlon, M. J. Ontogeny of the sheathing leaf base in maize (Zea mays). New Phytol. 205, 306–315 (2015). (PMID: 2519569210.1111/nph.13010) ; Ben-Haj-Salah, H. & Tardieu, F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length – analysis of the coordination between cell division and cell expansion. Plant Physiol. 109, 861–870 (1995). (PMID: 1222863816138710.1104/pp.109.3.861) ; Tardieu, F., Reymond, M., Hamard, P., Granier, C. & Muller, B. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J. Exp. Bot. 51, 1505–1514 (2000). (PMID: 1100630210.1093/jexbot/51.350.1505) ; Runions, A. et al. Modeling and visualization of leaf venation patterns. ACM Trans. Graphic. 24, 702–711 (2005). (PMID: 10.1145/1073204.1073251) ; Scarpella, E. & Meijer, A. H. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209–242 (2004). (PMID: 3387355710.1111/j.1469-8137.2004.01191.x) ; Baskin, T. I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell. Dev. 21, 203–222 (2005). (PMID: 10.1146/annurev.cellbio.20.082503.103053) ; Fujita, H. & Mochizuki, A. The origin of the diversity of leaf venation pattern. Dev. Dyn. 235, 2710–2721 (2006). (PMID: 1689460110.1002/dvdy.20908) ; Granier, C. & Tardieu, F. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant Cell Environ. 32, 1175–1184 (2009). (PMID: 1921063710.1111/j.1365-3040.2009.01955.x) ; Scarpella, E., Barkoulas, M. & Tsiantis, M. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a001511 (2010). (PMID: 20182604282790510.1101/cshperspect.a001511) ; Gázquez, A. & Beemster, G. T. S. What determines organ size differences between species? A meta-analysis of the cellular basis. New Phytol. 215, 299–308 (2017). (PMID: 2844055810.1111/nph.14573) ; Scarpella, E. The logic of plant vascular patterning. Polarity, continuity and plasticity in the formation of the veins and of their networks. Curr. Opin. Genet. Dev. 45, 34–43 (2017). (PMID: 2826259710.1016/j.gde.2017.02.009) ; Berlyn, G. P. M. J. P. Botanical Microtechnique and Cytochemistry (Iowa State Univ. Press, 1976). ; Kemp, C. D. Methods of estimating leaf area of grasses from linear measurements. Ann. Bot. 24, 491–499 (1960). (PMID: 10.1093/oxfordjournals.aob.a083723) ; Stickler, F. C., Wearden, S. & Pauli, A. W. Leaf area determination in grain sorghum. Agronony 53, 187–188 (1961). (PMID: 10.2134/agronj1961.00021962005300030018x) ; Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019). (PMID: 10.1007/s00468-019-01843-4) ; Ellis, R. P. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf blade as viewed in transverse section. Bothalia 12, 65–109 (1976). (PMID: 10.4102/abc.v12i1.1382) ; Evert, R. F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development (John Wiley, 2006). ; Neufeld, H. S. et al. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiol. 100, 1020–1028 (1992). (PMID: 16653010107565910.1104/pp.100.2.1020) ; Tyree, M. T., Zimmermann, M. H. & Zimmermann, M. H. Xylem Structure and the Ascent of Sap 2nd edn (Springer, 2002). ; Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004). (PMID: 1510336810.1038/nature02403) ; Grass Phylogeny Working Group II. New grass phylogeny resolves deep evolutionary relationships and discovers C 4 origins. New Phytol. 193, 304–312 (2012). (PMID: 10.1111/j.1469-8137.2011.03972.x) ; Taylor, S. H. et al. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol. 193, 387–396 (2012). (PMID: 2204051310.1111/j.1469-8137.2011.03935.x) ; Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 1503414739033710.1093/nar/gkh340) ; Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007). (PMID: 17996036224747610.1186/1471-2148-7-214) ; Christin, P. A. et al. Molecular dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63, 153–165 (2014). (PMID: 2428709710.1093/sysbio/syt072) ; Prasad, V. et al. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat. Commun. 2, 480 (2011). (PMID: 2193466410.1038/ncomms1482) ; R Core Team. R: A Language and Environment for Statistical Computing, http://www.R-project.org/ (R Foundation for Statistical Computing, 2019). ; Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). (PMID: 3001640610.1093/bioinformatics/bty633) ; Spriggs, E. L., Christin, P.-A. & Edwards, E. J. Data from: C 4 photosynthesis promoted species diversification during the Miocene grassland expansion, https://doi.org/10.5061/dryad.74b5d (2015). ; Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985). (PMID: 10.1086/284325) ; Schmerler, S. B. et al. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B. 279, 3905–3913 (2012). (PMID: 22810426342757510.1098/rspb.2012.1110) ; Fletcher, L. R. et al. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Am. J. Bot. 105, 1672–1687 (2018). (PMID: 3036879810.1002/ajb2.1164) ; Bramer, I. et al. in Next Generation Biomonitoring: Part 1 (Advances in Ecological Research, volume 58) (eds. Bohan, D. A. et al.) 101–161 (Academic, 2018). ; Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). (PMID: 2436256410.1038/nature12872) ; Watcharamongkol, T., Christin, P. A. & Osborne, C. P. C. C 4 photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecol. Lett. 21, 376–383 (2018). (PMID: 2931875310.1111/ele.12905) ; Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference 2nd edn (Springer, 2002). ; Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006). ; Faraway, J. J. Linear Models with R (Chapman & Hall, 2009). ; Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009). (PMID: 1932321810.1890/07-1929.1) ; Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006). (PMID: 1669791210.1016/j.tree.2006.02.004) ; Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol. Divers. 9, 3–33 (2016). (PMID: 10.1080/17550874.2015.1048761) ; Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003). (PMID: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2) ; Grubb, P. J., Coomes, D. A. & Metcalfe, D. J. Comment on “A brief history of seed size”. Science 310, 783 (2005). (PMID: 1627210210.1126/science.1116097) ; Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009). (PMID: 10.1111/j.1365-2745.2009.01526.x) ; Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999). (PMID: 1055390410.1038/44766) ; Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002). (PMID: 1870746010.1086/343873) ; Pinheiro, J. et al. nlme: linear and nonlinear mixed effect models. R package version 3.1-140, https://CRAN.R-project.org/package=nlme (2019). ; Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). (PMID: 10.1111/j.2041-210X.2011.00169.x) ; Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006). (PMID: 1657384410.1017/S1464793106007007) ; Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic analysis of covariance by computer-simulation. Syst. Biol. 42, 265–292 (1993). (PMID: 10.1093/sysbio/42.3.265) ; Gross, J. & Ligges, U. nortest: tests for normality. R package version 1.0-4, https://cran.r-project.org/package=nortest (2015). ; Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012). (PMID: 23227027351451110.3389/fpls.2012.00259) ; Smith, R. J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476–486 (2009). (PMID: 1942509710.1002/ajpa.21090) ; Gates, D. M. Energy, plants, and ecology. Ecology 46, 1–13 (1965). (PMID: 10.2307/1935252) ; Lusk, C. H. et al. Frost and leaf-size gradients in forests: global patterns and experimental evidence. New Phytol. 219, 565–573 (2018). (PMID: 2976650210.1111/nph.15202) ; Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019). (PMID: 31844509689934510.1093/aobpla/plz054) ; Taylor, S. H. et al. Ecophysiological traits in C 3 and C 4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010). (PMID: 2000231810.1111/j.1469-8137.2009.03102.x) ; Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019). (PMID: 30858592649122310.1038/s41559-019-0838-x) ; Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149, 78–90 (1980). (PMID: 2430619610.1007/BF00386231) ; Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26, 1419–1430 (2003). (PMID: 10.1046/j.0016-8025.2003.01050.x) ; Muir, C. D. Making pore choices: repeated regime shifts in stomatal ratio. Proc. R. Soc. B. 282, 1–9 (2012). ; Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (Hunt Institute for Botanical Documentation, 2001).
  • Substance Nomenclature: 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20210325 Date Completed: 20210802 Latest Revision: 20230130
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -