Zum Hauptinhalt springen

Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms.

Sinha, P ; Cree, SL ; et al.
In: The pharmacogenomics journal, Jg. 21 (2021-06-01), Heft 3, S. 359
Online academicJournal

Titel:
Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms.
Autor/in / Beteiligte Person: Sinha, P ; Cree, SL ; Miller, AL ; Pearson, JF ; Kennedy, MA
Link:
Zeitschrift: The pharmacogenomics journal, Jg. 21 (2021-06-01), Heft 3, S. 359
Veröffentlichung: Avenet, NJ : Nature Pub. Group, c2001-, 2021
Medientyp: academicJournal
ISSN: 1473-1150 (electronic)
DOI: 10.1038/s41397-021-00215-x
Schlagwort:
  • Animals
  • Cell Line
  • Computational Biology
  • Histone Deacetylases metabolism
  • Lithium pharmacology
  • RNA-Seq
  • Rats
  • Transcriptional Activation
  • Antimanic Agents pharmacology
  • Gene Expression Regulation drug effects
  • Gene Expression Regulation genetics
  • Histone Deacetylase Inhibitors pharmacology
  • Serotonin metabolism
  • Transcription, Genetic genetics
  • Valproic Acid pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Pharmacogenomics J] 2021 Jun; Vol. 21 (3), pp. 359-375. <i>Date of Electronic Publication: </i>2021 Mar 01.
  • MeSH Terms: Antimanic Agents / *pharmacology ; Gene Expression Regulation / *drug effects ; Gene Expression Regulation / *genetics ; Histone Deacetylase Inhibitors / *pharmacology ; Serotonin / *metabolism ; Transcription, Genetic / *genetics ; Valproic Acid / *pharmacology ; Animals ; Cell Line ; Computational Biology ; Histone Deacetylases / metabolism ; Lithium / pharmacology ; RNA-Seq ; Rats ; Transcriptional Activation
  • References: Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41. (PMID: 1147310710.1074/jbc.M101287200) ; Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J. 2001;20:6969–78. (PMID: 1174297412578810.1093/emboj/20.24.6969) ; Cipriani A, Reid K, Young AH, Macritchie K, Geddes J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev. 2013;10:CD003196. ; Sargent PA, Rabiner EA, Bhagwagar Z, Clark L, Cowen P, Goodwin GM. et al. 5-HT(1A) receptor binding in euthymic bipolar patients using positron emission tomography with [carbonyl-(11)C]WAY-100635. J Affect Disord.2010;123:77–80. (PMID: 1972608810.1016/j.jad.2009.07.015) ; Wu JB, Shih JC. Valproic acid induces monoamine oxidase A via Akt/FoxO1 activation. Mol Pharmacol. 2011;80:714–23. (PMID: 21775495318752910.1124/mol.111.072744) ; Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry. 2006;11:1116–25. (PMID: 1696936710.1038/sj.mp.4001893) ; Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci. 2007;64:2090–103. (PMID: 1751435610.1007/s00018-007-7079-x) ; Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharm Rev. 2013;65:105–42. (PMID: 23300133356592210.1124/pr.111.005512) ; Soeiro-de-Souza Márcio G, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C, et al. Anterior cingulate Glutamate–Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol. 2015;25:2221–9. (PMID: 2647670610.1016/j.euroneuro.2015.09.020) ; Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, et al. Anterior Cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:985–91. ; Yu W, Daniel J, Mehta D, Maddipati KR, Greenberg ML. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PloS ONE. 2017;12:e0182534. (PMID: 28817575556067410.1371/journal.pone.0182534) ; Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry. 2009;21:414–23. (PMID: 2037415510.1080/09540260902962214) ; Hashimoto K, Xing B, Liang X-p, Liu P, Zhao Y, Chu Z, et al. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PloS one. 2015;10:e0128068. (PMID: 10.1371/journal.pone.0128068) ; Abrial E, Etievant A, Betry C, Scarna H, Lucas G, Haddjeri N, et al. Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:40–48. (PMID: 10.1016/j.pnpbp.2012.11.015) ; Ludtmann MH, Boeckeler K, Williams RS. Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin Cell Dev Biol. 2011;22:105–13. (PMID: 21093602303289210.1016/j.semcdb.2010.11.002) ; Einat H, Manji HK, Gould TD, Du J, Chen G. Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug N. Perspect. 2003;16:453–63. (PMID: 10.1358/dnp.2003.16.7.829357) ; Maletic V, Raison C. Integrated neurobiology of bipolar disorder. Front Psychiatry. 2014;5:98. (PMID: 25202283414232210.3389/fpsyt.2014.00098) ; Shiah IS, Yatham LN. Serotonin in mania and in the mechanism of action of mood stabilizers: a review of clinical studies. Bipolar Disord. 2000;2:77–92. (PMID: 1125265510.1034/j.1399-5618.2000.020201.x) ; Yu W, Greenberg ML. Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurol. 2016;11:135–48. (PMID: 29339929575151410.2217/fnl-2016-0003) ; Gardea-Resendez M, Kucuker MU, Blacker CJ, Ho AMC, Croarkin PE, Frye MA, et al. Dissecting the epigenetic changes induced by non-antipsychotic mood stabilizers on schizophrenia and affective disorders: a systematic review. Front Pharmacol. 2020;11:467. (PMID: 32390836718973110.3389/fphar.2020.00467) ; Chen G, Huang LD, Jiang YM, Manji HK. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J neurochemistry. 1999;72:1327–30. (PMID: 10.1046/j.1471-4159.2000.0721327.x) ; Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ. Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J neurochemistry. 1994;63:2361–4. (PMID: 10.1046/j.1471-4159.1994.63062361.x) ; Chen G, Manji HK, Wright CB, Hawver DB, Potter WZ. Effects of valproic acid on beta-adrenergic receptors, G-proteins, and adenylyl cyclase in rat C6 glioma cells. Neuropsychopharmacology. 1996;15:271–80. (PMID: 887311010.1016/0893-133X(95)00207-T) ; Chen G, Yuan P, Hawver DB, Potter WZ, Manji HK. Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology. 1997;16:238–45. (PMID: 913844010.1016/S0893-133X(96)00239-4) ; Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK. Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res. 1999;64:52–58. (PMID: 988931810.1016/S0169-328X(98)00303-9) ; Daniel ED, Mudge AW, Maycox PR. Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar Disord. 2005;7:33–41. (PMID: 1565493010.1111/j.1399-5618.2004.00164.x) ; Adams LJ, Schofield PR. Microarray studies of changes in gene expression in mouse brain induced by anti-manic drugs. Am J Med Genet - Neuropsychiatr Genet. 2001;105:582–3. ; Bosetti F, Bell JM, Manickam P. Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull. 2005;65:331–8. (PMID: 1581159910.1016/j.brainresbull.2005.01.004) ; Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol. 2006;9:267–76. (PMID: 1598244510.1017/S1461145705005717) ; Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, et al. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res. 2009;65:35–43. (PMID: 1946386710.1016/j.neures.2009.05.002) ; LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics. 2009;2:67. (PMID: 19948057279943910.1186/1755-8794-2-67) ; Zhang X-Z, Yin A-H, Zhu X-Y, Ding Q, Wang C-H, Chen Y-X. Using an exon microarray to identify a global profile of gene expression and alternative splicing in K562 cells exposed to sodium valproate. Oncol Rep. 2012;27:1258–65. (PMID: 2220090410.3892/or.2011.1601) ; Lee RS, Pirooznia M, Guintivano J, Ly M, Ewald ER, Tamashiro KL, et al. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl Psychiatry. 2015;5:e600. (PMID: 26171981506873110.1038/tp.2015.90) ; Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, et al. Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res. 2010;44:506–10. (PMID: 1995480010.1016/j.jpsychires.2009.11.002) ; Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and Bcl-2 expression levels in rat frontal cortex. Neurochem Res. 2009;34:536–41. (PMID: 1871999610.1007/s11064-008-9817-3) ; Asghari V, Wang JF, Reiach JS, Young LT. Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res. 1998;58:95–102. (PMID: 968559510.1016/S0169-328X(98)00107-7) ; Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology. 2016;233:1751–62. (PMID: 2685222910.1007/s00213-016-4223-z) ; Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26:331–43. (PMID: 1472913510.1016/j.jchemneu.2003.10.002) ; White LA, Eaton MJ, Castro MC, Klose KJ, Globus MY, Shaw G, et al. Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons. J Neurosci. 1994;14:6744–53. (PMID: 7965075657723910.1523/JNEUROSCI.14-11-06744.1994) ; McHugh PC, Joyce PR, Kennedy MA. Polymorphisms of sepiapterin reductase gene alter promoter activity and may influence risk of bipolar disorder. Pharmacogenetics Genomics. 2009;19:330–7. (PMID: 1941581910.1097/FPC.0b013e328328f82c) ; McHugh PC, Joyce PR, Deng X, Kennedy MA. A polymorphism of the GTP-cyclohydrolase I feedback regulator gene alters transcriptional activity and may affect response to SSRI antidepressants. Pharmacogenomics J. 2010;11:207–13. (PMID: 2035175210.1038/tpj.2010.23) ; Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiological Genomics. 2019;51:43–50. (PMID: 3057626010.1152/physiolgenomics.00069.2018) ; Glubb DM, Joyce PR, Kennedy MA. Expression and association analyses of promoter variants of the neurogenic gene HES6, a candidate gene for mood disorder susceptibility and antidepressant response. Neurosci Lett. 2009;460:185–90. (PMID: 1948158410.1016/j.neulet.2009.05.065) ; Glubb DM, McHugh PC, Deng X, Joyce PR, Kennedy MA. Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine. Pharmacogenomics J. 2010;10:126–33. (PMID: 1963633610.1038/tpj.2009.33) ; Balasubramanian D, Deng AX, Doudney K, Hampton MB, Kennedy MA. Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology. 2015;99:79–88. (PMID: 2615176510.1016/j.neuropharm.2015.06.018) ; Eaton MJ, Staley JK, Globus MY, Whittemore SR. Developmental regulation of early serotonergic neuronal differentiation: the role of brain-derived neurotrophic factor and membrane depolarization. Developmental Biol. 1995;170:169–82. (PMID: 10.1006/dbio.1995.1205) ; Fleming J, Chetty M. Therapeutic monitoring of valproate in psychiatry. Clin Neuropharmacol. 2006;29:350–60. (PMID: 1709589910.1097/01.WNF.0000228209.69524.E8) ; Severus WE, Kleindienst N, Seemuller F, Frangou S, Moller HJ, Greil W. What is the optimal serum lithium level in the long-term treatment of bipolar disorder-a review? Bipolar Disord. 2008;10:231–7. (PMID: 1827190110.1111/j.1399-5618.2007.00475.x) ; Reddy DS, Reddy MS. Serum lithium levels: ideal time for sample collection! are we doing it right? Indian J Psychol Med. 2014;36:346–7. (PMID: 25035570410043210.4103/0253-7176.135399) ; Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA. 1999;96:8745–50. (PMID: 104119461758710.1073/pnas.96.15.8745) ; Lai JS, Zhao C, Warsh JJ, Li PP. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol. 2006;539:18–26. (PMID: 1667815710.1016/j.ejphar.2006.03.076) ; Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry. 2005;58:879–84. (PMID: 1600543610.1016/j.biopsych.2005.04.052) ; Nciri R, Bourogaa E, Jbahi S, Allagui MS, Elfeki A, Vincent C, et al. Chronic neuroprotective effects of low concentration lithium on SH-SY5Y cells: possible involvement of stress proteins and gene expression. Neural Regen Res. 2014;9:735–40. (PMID: 25206881414627610.4103/1673-5374.131578) ; Kim HJ, Thayer SA. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharm. 2009;75:1021–30. (PMID: 10.1124/mol.108.052357) ; O’Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 2000;880:84–91. (PMID: 1103299210.1016/S0006-8993(00)02797-9) ; Otero Losada ME, Rubio MC. Acute and chronic effects of lithium chloride on GABA-ergic function in the rat corpus striatum and frontal cerebral cortex. Naunyn Schmiedebergs Arch Pharm. 1986;332:169–72. (PMID: 10.1007/BF00511408) ; Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S. Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology. 2001;158:100–6. (PMID: 1168539010.1007/s002130100871) ; Hillert M, Zimmermann M, Klein J. Uptake of lithium into rat brain after acute and chronic administration. Neurosci Lett. 2012;521:62–66. (PMID: 2265907410.1016/j.neulet.2012.05.060) ; Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. (PMID: 2310488610.1093/bioinformatics/bts635) ; Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. (PMID: 2704300210.1038/nbt.3519) ; Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9. (PMID: 28263959560014810.1038/nmeth.4197) ; Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. (PMID: 25516281430204910.1186/s13059-014-0550-8) ; Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2012;31:46–53. (PMID: 2322270310.1038/nbt.2450) ; Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5. (PMID: 20436464314604310.1038/nbt.1621) ; Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300. ; Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–97. (PMID: 27141961498792410.1093/nar/gkw377) ; Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bmc Bioinforma. 2013;14:128. (PMID: 10.1186/1471-2105-14-128) ; Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015;13:311–9. (PMID: 26484571467518110.1089/bio.2015.0032) ; Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2012;41:D996–D1008. (PMID: 23193282353109310.1093/nar/gks1042) ; Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88. (PMID: 10.1214/aos/1013699998) ; Wang H, Horbinski C, Wu H, Liu Y, Sheng S, Liu J, et al. NanoStringDiff: a novel statistical method for differential expression analysis based on NanoString nCounter data. Nucleic Acids Res. 2016;44:e151. (PMID: 274710315175344) ; Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2. (PMID: 1659556010.1093/bioinformatics/btl117) ; Adell A. Revisiting the role of raphe and serotonin in neuropsychiatric disorders. J Gen Physiol. 2015;145:257–9. (PMID: 25825168438021210.1085/jgp.201511389) ; Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol. 2009;28:1–10. (PMID: 1949098810.1016/j.reprotox.2009.02.014) ; Wieck A, Jones S. Dangers of valproate in pregnancy. BMJ. 2018;361:k1609. (PMID: 2966972810.1136/bmj.k1609) ; Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114:E4462–E4471. (PMID: 28500272546588710.1073/pnas.1700111114) ; Cruceanu C, Alda M, Grof P, Rouleau GA, Turecki G. Synapsin II is involved in the molecular pathway of lithium treatment in bipolar disorder. PloS one. 2012;7:e32680. (PMID: 22384280328647510.1371/journal.pone.0032680) ; Hill AS, Sahay A, Hen R, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40:2368–78. (PMID: 25833129453835110.1038/npp.2015.85) ; Schloesser RJ, Orvoen S, Jimenez DV, Hardy NF, Maynard KR, Sukumar M, et al. Antidepressant-like effects of electroconvulsive seizures require adult neurogenesis in a neuroendocrine model of depression. Brain Stimul. 2015;8:862–7. (PMID: 26138027456793010.1016/j.brs.2015.05.011) ; Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10. (PMID: 11124987677303810.1523/JNEUROSCI.20-24-09104.2000) ; Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9. (PMID: 1290779310.1126/science.1083328) ; Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013;36:259–67. (PMID: 23380665364859510.1016/j.tins.2012.12.010) ; Fornito A, Malhi GS, Lagopoulos J, Ivanovski B, Wood SJ, Velakoulis D, et al. In vivo evidence for early neurodevelopmental anomaly of the anterior cingulate cortex in bipolar disorder. Acta Psychiatr Scandinavica. 2007;116:467–72. (PMID: 10.1111/j.1600-0447.2007.01069.x) ; Schloesser RJ, Chen G, Manji HK. Neurogenesis and neuroenhancement in the pathophysiology and treatment of bipolar disorder. Int Rev Neurobiol. 2007;77:143–78. (PMID: 1717847410.1016/S0074-7742(06)77005-2) ; Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci. 2012;35:36–46. (PMID: 2221745110.1016/j.tins.2011.11.009) ; Hajek T, Cullis J, Novak T, Kopecek M, Hoschl C, Blagdon R, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012;14:261–70. (PMID: 22548899352564710.1111/j.1399-5618.2012.01013.x) ; Jang S, Jeong H-S. Histone deacetylase inhibition-mediated neuronal differentiation via the Wnt signaling pathway in human adipose tissue-derived mesenchymal stem cells. Neurosci Lett. 2018;668:24–30. (PMID: 2930759910.1016/j.neulet.2018.01.006) ; Jacob J, Ribes V, Moore S, Constable SC, Sasai N, Gerety SS, et al. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis Model Mech. 2014;7:107–17. (PMID: 24135485) ; Yu IT, Park J-Y, Kim SH, Lee J-s, Kim Y-S, Son H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology. 2009;56:473–80. (PMID: 1900779810.1016/j.neuropharm.2008.09.019) ; Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci. 2002;20:257–70. (PMID: 1209315810.1006/mcne.2002.1117) ; Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PloS one. 2014;9:e95875. (PMID: 24776767400243410.1371/journal.pone.0095875) ; Lubbers BR, Smit AB, Spijker S, van den Oever MC. Chapter 12 - Neural ECM in addiction, schizophrenia, and mood disorder. In: Dityatev A, Wehrle-Haller B, Pitkänen A (eds), Progress in Brain Research, vol. 214. Elsevier, 2014. pp. 263−284. ; Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696. (PMID: 2683972010.1155/2016/9847696) ; Drago A, Monti B, De Ronchi D, Serretti A. Genetic variations within metalloproteinases impact on the prophylaxis of depressive phases in bipolar patients. Neuropsychobiology. 2014;69:76–82. (PMID: 2457697610.1159/000356971) ; Berretta S. Extracellular matrix abnormalities in schizophrenia. Neuropharmacology. 2012;62:1584–97. (PMID: 2185631810.1016/j.neuropharm.2011.08.010) ; Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, et al. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. Pharmacogenomics J. 2012;12:328–41. (PMID: 2138377310.1038/tpj.2011.9) ; Gurvich N, Klein PS. Lithium and valproic acid: Parallels and contrasts in diverse signaling contexts. Pharmacol Therapeutics. 2002;96:45–66. (PMID: 10.1016/S0163-7258(02)00299-1) ; Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, et al. Lithium and valproate act on the GSK-3beta signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology. 2017;117:447–59. (PMID: 2778931110.1016/j.neuropharm.2016.10.015) ; Van de Pette M, Abbas A, Feytout A, McNamara G, Bruno L, To WK, et al. Visualizing changes in cdkn1c expression links early-life adversity to imprint mis-regulation in adults. Cell Rep. 2017;18:1090–9. (PMID: 28147266530090210.1016/j.celrep.2017.01.010) ; Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y. p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 2013;32:970–81. (PMID: 23481253361629210.1038/emboj.2013.50) ; Le NPK, Channabasappa S, Hossain M, Liu L, Singh B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am J Physiol-Lung Cell Mol Physiol. 2015;309:L995–L1008. (PMID: 26320151462898010.1152/ajplung.00068.2014) ; Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’Anna M, Mascarenhas M, Vargas AE, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7. (PMID: 1925132410.1016/j.jad.2008.12.001) ; Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74:15–25. (PMID: 2341954510.1016/j.biopsych.2013.01.007) ; Kunz M, Cereser KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS, et al. Serum levels of IL-6, IL-10 and TNF-alpha in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance. Rev Bras Psiquiatr. 2011;33:268–74. (PMID: 21971780) ; Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. Neuroimmunomodulation. 2014;21:117–22. (PMID: 2455704410.1159/000356539) ; Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol psychiatry. 2010;15:384–92. (PMID: 1948804510.1038/mp.2009.47) ; Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 2009;5:e1000604. (PMID: 19680447271870610.1371/journal.pgen.1000604) ; Carlson PJ, Singh JB, Zarate JrCA, Drevets WC, Manji HK. Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets. NeuroRx. 2006;3:22–41. (PMID: 16490411359336110.1016/j.nurx.2005.12.009) ; Rocha MV, Nery F, Galvão-de-Almeida A, Quarantini LdC, Miranda-Scippa Â. Neuroplasticity in Bipolar Disorder: Insights from Neuroimaging. In Heinbockel, T (ed.), Synaptic Plasticity. London, UK: Intech Open Ltd; 2017. pp. 1040−1057. ; Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Takamura N, et al. Valproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3beta and beta-catenin pathway. Eur J Pharm. 2014;723:425–30. (PMID: 10.1016/j.ejphar.2013.10.060) ; Wexler EM, Geschwind DH, Palmer TD. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol psychiatry. 2008;13:285–92. (PMID: 1796835310.1038/sj.mp.4002093) ; Deng X Gene Regulation by Drugs Used to Treat Mood Disorders Doctor of Philosophy thesis, Univesity of Otago, 2011. ; Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res. 2002;2:193–212. (PMID: 22707923337505710.1016/S1566-2772(02)00044-0) ; Lagace DC, Timothy O’Brien W, Gurvich N, Nachtigal MW, Klein PS. Valproic acid: how it works. Or not. Clin Neurosci Res. 2004;4:215–25. (PMID: 10.1016/j.cnr.2004.09.013) ; Arent CO, Valvassori SS, Fries GR, Stertz L, Ferreira CL, Lopes-Borges J, et al. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol Neurobiol. 2011;43:207–14. (PMID: 2142467810.1007/s12035-011-8178-0) ; Machado-Vieira R, Ibrahim L Jr, CAZ. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Therapeutics. 2010;17:699–704. (PMID: 10.1111/j.1755-5949.2010.00203.x) ; Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci. 2007;104:6406–11. (PMID: 17379666185106110.1073/pnas.0609625104) ; Stertz L, Fries GR, Aguiar BWD, Pfaffenseller B, Valvassori SS, Gubert C, et al. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev Brasileira de Psiquiatria. 2013;36:39–46. (PMID: 10.1590/1516-4446-2013-1094)
  • Substance Nomenclature: 0 (Antimanic Agents) ; 0 (Histone Deacetylase Inhibitors) ; 333DO1RDJY (Serotonin) ; 614OI1Z5WI (Valproic Acid) ; 9FN79X2M3F (Lithium) ; EC 3.5.1.98 (Histone Deacetylases)
  • Entry Date(s): Date Created: 20210302 Date Completed: 20220124 Latest Revision: 20221026
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -