Zum Hauptinhalt springen

Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm.

Delfini, J ; Moda-Cirino, V ; et al.
In: Scientific reports, Jg. 11 (2021-02-03), Heft 1, S. 2964
Online academicJournal

Titel:
Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm.
Autor/in / Beteiligte Person: Delfini, J ; Moda-Cirino, V ; Dos Santos Neto, J ; Ruas, PM ; Sant'Ana, GC ; Gepts, P ; Gonçalves, LSA
Link:
Zeitschrift: Scientific reports, Jg. 11 (2021-02-03), Heft 1, S. 2964
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2021
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-021-82437-4
Schlagwort:
  • Brazil
  • DNA, Plant
  • Domestication
  • Gene Frequency
  • Gene Pool
  • Genetic Variation
  • Genome-Wide Association Study
  • Genotyping Techniques
  • Linkage Disequilibrium
  • Polymorphism, Single Nucleotide
  • Genome, Plant
  • Phaseolus genetics
  • Plant Breeding methods
  • Selection, Genetic
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2021 Feb 03; Vol. 11 (1), pp. 2964. <i>Date of Electronic Publication: </i>2021 Feb 03.
  • MeSH Terms: Genome, Plant* ; Selection, Genetic* ; Phaseolus / *genetics ; Plant Breeding / *methods ; Brazil ; DNA, Plant ; Domestication ; Gene Frequency ; Gene Pool ; Genetic Variation ; Genome-Wide Association Study ; Genotyping Techniques ; Linkage Disequilibrium ; Polymorphism, Single Nucleotide
  • References: Broughton, W. J. et al. Beans (Phaseolus spp.)—model food legumes. Plant Soil 252, 55–128 (2003). (PMID: 10.1023/A:1024146710611) ; FAO, F. and A. O. FAOSTAT: FAO Statistical Databases. http://www.fao.org/faostat/ (2020). ; Kwak, M. & Gepts, P. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor. Appl. Genet. 118, 979–992 (2009). (PMID: 1913002910.1007/s00122-008-0955-4) ; Bitocchi, E. et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 197, 300–313 (2013). (PMID: 2312668310.1111/j.1469-8137.2012.04377.x) ; Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014). (PMID: 24908249704869810.1038/ng.3008) ; Vlasova, A. et al. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol. 17, 1–18 (2016). (PMID: 10.1186/s13059-016-0883-6) ; Oladzad, A. et al. Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. G3 Genes Genomes Genet. 9, 1881–1892 (2019). ; Cichy, K. A., Caldas, G. V., Snapp, S. S. & Blair, M. W. QTL analysis of seed iron, zinc, and phosphorus levels in an andean bean population. Crop Sci. 49, 1742–1750 (2009). (PMID: 10.2135/cropsci2008.10.0605) ; Ribeiro, N. D. et al. Evaluation of special grains bean lines for grain yield, cooking time and mineral concentrations. Crop Breed. Appl. Biotechnol. 14, 15–22 (2014). (PMID: 10.1590/S1984-70332014000100003) ; Perseguini, J. M. K. C. et al. Developing a common bean core collection suitable for association mapping studies. Genet. Mol. Biol. 38, 67–78 (2015). (PMID: 2598362710.1590/S1415-475738120140126) ; MAPA, Ministerio da Agricultura Pecuária e Abastecimento. Plano nacional de desenvolvimento da cadeia do feijão e pulses (2018). ; Cheng, J. et al. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci. Rep. 6, 1–11 (2016). ; He, J. et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5, 484 (2014). (PMID: 25324846417970110.3389/fpls.2014.00484) ; Bhattarai, U. & Subudhi, P. K. Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS-based SNP linkage map. Euphytica 214, 1–17 (2018). (PMID: 10.1007/s10681-018-2117-3) ; Stapley, J. et al. Adaptation genomics: The next generation. Trends Ecol. Evol. 25, 705–712 (2010). (PMID: 2095208810.1016/j.tree.2010.09.002) ; Gujaria-Verma, N. et al. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17, 239 (2016). (PMID: 26979462479350710.1186/s12864-016-2499-3) ; Siadjeu, C., Mayland-Quellhorst, E. & Albach, D. C. Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS). BMC Plant Biol. 18, 1–14 (2018). (PMID: 10.1186/s12870-018-1593-x) ; Ariani, A., Bern y Miery Teran, J. C. & Gepts, P. Genome-wide identification of SNPs and copy number variation in common bean (Phaseolus vulgaris L.) using genotyping-by-sequencing (GBS). Mol. Breed. 36, 87 (2016). (PMID: 10.1007/s11032-016-0512-9) ; Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, 1–10 (2011). (PMID: 10.1371/journal.pone.0019379) ; Schröder, S. et al. Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.). Mol. Breed. 36, 1–9 (2016). (PMID: 10.1007/s11032-015-0431-1) ; Wang, S. et al. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol. 16, 108 (2015). (PMID: 26003111446957710.1186/s13059-015-0678-1) ; Burghardt, L. T., Young, N. D. & Tiffin, P. A guide to genome-wide association mapping in plants. Curr. Protoc. Plant Biol. 2, 22–38 (2017). (PMID: 3172597310.1002/cppb.20041) ; Korte, A. & Ashley, F. The advantages and limitations of trait analysis with GWAS: A review Self-fertilisation makes Arabidopsis particularly well suited to GWAS. Plant Methods 9, 29 (2013). (PMID: 23876160375030510.1186/1746-4811-9-29) ; Zhang, D., Bai, G., Zhu, C., Yu, J. & Carver, B. F. Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome J. 3, 117 (2010). ; Nicolas, S. D. et al. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol. 16, 1–19 (2016). (PMID: 10.1186/s12870-016-0754-z) ; Bhatta, M., Morgounov, A., Belamkar, V., Poland, J. & Baenziger, P. S. Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics 19, 1–12 (2018). (PMID: 10.1186/s12864-018-4969-2) ; Eltaher, S. et al. Genetic diversity and population structure of F3:6 Nebraska Winter wheat genotypes using genotyping-by-sequencing. Front. Genet. 9, 1–9 (2018). (PMID: 10.3389/fgene.2018.00076) ; Alipour, H. et al. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front. Plant Sci. 8, 1–14 (2017). (PMID: 10.3389/fpls.2017.01293) ; Luo, Z. et al. Genetic diversity and population structure of a Camelina sativa spring panel. Front. Plant Sci. 10, 1–12 (2019). (PMID: 10.3389/fpls.2019.00184) ; Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J. & Rodríguez-Burruezo, A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Hortic. Res. 6, 54 (2019). (PMID: 31044080649149010.1038/s41438-019-0132-8) ; Xu, Q. et al. The genetic diversity and structure of indica rice in China as detected by single nucleotide polymorphism analysis. BMC Genet. 17, 1–8 (2016). (PMID: 10.1186/s12863-016-0361-x) ; Moghaddam, S. M. et al. Genome-wide association study identifies candidate loci underlying agronomic traits in a middle American diversity panel of common bean. Plant Genome 9, 1–21 (2016). (PMID: 10.3835/plantgenome2016.02.0012) ; Cichy, K. A. et al. A Phaseolus vulgaris diversity panel for Andean bean Improvement. Crop Sci. 55, 2149–2160 (2015). (PMID: 10.2135/cropsci2014.09.0653) ; Campa, A., Murube, E. & Ferreira, J. J. Genetic diversity, population structure, and linkage disequilibrium in a Spanish common bean diversity panel revealed through genotyping-by-sequencing. Genes (Basel) 9, 518 (2018). (PMID: 10.3390/genes9110518) ; Lioi, L., Zuluaga, D. L., Pavan, S. & Sonnante, G. Genotyping-by-sequencing reveals molecular genetic diversity in Italian common bean landraces. Diversity 11, 1–14 (2019). (PMID: 10.3390/d11090154) ; Raggi, L., Caproni, L., Carboni, A. & Negri, V. Genome-wide association study reveals candidate genes for flowering time variation in common bean (Phaseolus vulgaris L.). Front. Plant Sci. 10, 1–14 (2019). (PMID: 10.3389/fpls.2019.00962) ; Perseguini, J. M. K. C. et al. Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS ONE 11, 1–19 (2016). (PMID: 10.1371/journal.pone.0150506) ; Tock, A. J. et al. Genome-wide linkage and association mapping of halo blight resistance in common bean to race 6 of the globally important bacterial pathogen. Front. Plant Sci. 8, 1–17 (2017). (PMID: 10.3389/fpls.2017.01170) ; Katuuramu, D. N. et al. Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol. Breed. 38, 44 (2018). (PMID: 10.1007/s11032-018-0798-x) ; Resende, R. T. et al. Genome-wide association and Regional Heritability Mapping of plant architecture, lodging and productivity in Phaseolus vulgaris. G3 Genes Genomes Genet. 8, 2841–2854 (2018). ; Moghaddam, S. M. et al. Genetic architecture of dietary fiber and oligosaccharide content in a middle american panel of edible dry bean. Plant Genome 11, 1–11 (2018). (PMID: 10.3835/plantgenome2017.08.0074) ; Kamfwa, K., Cichy, K. A. & Kelly, J. D. Genome-wide association study of agronomic traits in common bean. Plant Genome 8, 1–12 (2015). (PMID: 10.3835/plantgenome2014.09.0059) ; Cichy, K. A., Wiesinger, J. A. & Mendoza, F. A. Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 128, 1555–1567 (2015). (PMID: 2600319110.1007/s00122-015-2531-z) ; Kamfwa, K., Cichy, K. A. & Kelly, J. D. Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor. Appl. Genet. 128, 1999–2017 (2015). (PMID: 2613373310.1007/s00122-015-2562-5) ; Zuiderveen, G. H., Padder, B. A., Kamfwa, K. & Song, Q. Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS ONE https://doi.org/10.1371/journal.pone.0156391 (2016). (PMID: 10.1371/journal.pone.0156391272706274894742) ; Soltani, A. et al. Genetic architecture of flooding tolerance in the dry bean middle-American diversity panel. Front. Plant Sci. 8, 1–15 (2017). (PMID: 10.3389/fpls.2017.01183) ; Soltani, A. et al. Genetic analysis of flooding tolerance in an Andean diversity panel of dry bean (Phaseolus vulgaris L.). Front. Plant Sci. 9, 767 (2018). (PMID: 29928287599796810.3389/fpls.2018.00767) ; Valdisser, P. A. et al. Genome-wide association studies detect multiple QTLs for productivity in Mesoamerican diversity panel of common bean under drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.574674 (2020). (PMID: 10.3389/fpls.2020.574674333435917738703) ; Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005). (PMID: 10.1111/j.1365-294X.2005.02553.x15969739) ; Burle, M. L., Fonseca, J. R., Kami, J. A. & Gepts, P. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor. Appl. Genet. 121, 801–813 (2010). (PMID: 20502861294043310.1007/s00122-010-1350-5) ; Valdisser, P. A. M. R. et al. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 18, 1–19 (2017). (PMID: 10.1186/s12864-017-3805-4) ; Gaur, R. et al. High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci. Rep. 5, 1–11 (2015). (PMID: 10.1038/srep13387) ; Pavan, S. et al. A distinct genetic cluster in cultivated chickpea as revealed by genome-wide marker discovery and genotyping. Plant Genome 10, 1–9 (2017). (PMID: 10.3835/plantgenome2016.11.0115) ; Guo, C. et al. Transversions have larger regulatory effects than transitions. BMC Genomics 18, 1 (2017). (PMID: 10.1186/s12864-017-3785-4) ; Berny Mier y Teran, J. C. et al. Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.). Ann. Bot. https://doi.org/10.1093/aob/mcy221 (2018). (PMID: 10.1093/aob/mcy2216881220) ; Blair, M. W. et al. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS ONE 13, 1–21 (2018). (PMID: 10.1371/journal.pone.0189597) ; Diniz, A. L. et al. Evidence for strong kinship influence on the extent of linkage disequilibrium in cultivated common beans. Genes (Basel) 10, 1–16 (2019). ; Pipan, B. & Meglič, V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC Plant Biol. 19, 1–16 (2019). (PMID: 10.1186/s12870-019-2051-0) ; Raatz, B. et al. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform: Diversity, quality control and molecular breeding. Genet. Resour. Crop Evol. 66, 707–722 (2019). (PMID: 30956400642415110.1007/s10722-019-00746-0) ; Valentini, G., Gonçalves-Vidigal, M. C., Elias, J. C. F., Moiana, L. D. & Mindo, N. N. A. Population structure and genetic diversity of common bean accessions from Brazil. Plant Mol. Biol. Rep. 36, 897–906 (2018). (PMID: 10.1007/s11105-018-1129-4) ; Valdisser, P. A. M. R. et al. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis. Mol. Genet. Genomics 291, 1277–1291 (2016). (PMID: 2693237210.1007/s00438-016-1182-3) ; Gioia, T., Logozzo, G., Marzario, S., Zeuli, P. S. & Gepts, P. Evolution of SSR diversity from wild types to U.S. Advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE 14, 1–21 (2019). (PMID: 10.1371/journal.pone.0211342) ; Delfini, J. et al. Distinctness of Brazilian common bean cultivars with carioca and black grain by means of morphoagronomic and molecular descriptors. PLoS ONE 12, e0188798 (2017). (PMID: 29190665570870010.1371/journal.pone.0188798) ; Delfini, J. et al. Estimation of genetic parameters and prediction of genotypic values in common beans using mixed models. Emirates J. Food Agric. 30, 1026–1035 (2018). ; Cortés, A. J., Chavarro, M. C. & Blair, M. W. SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 123, 827–845 (2011). (PMID: 2178595110.1007/s00122-011-1630-8) ; Blair, M. W. et al. A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 126, 535–548 (2013). (PMID: 2312438910.1007/s00122-012-1999-z) ; Ariani, A., Mier Teran, J. C. B. & Gepts, P. Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Mol. Biol. Evol. 35, 119–131 (2017). (PMID: 585074510.1093/molbev/msx273) ; Contreras-Soto, R. I., de Oliveira, M. B., Costenaro-da-Silva, D., Scapim, C. A. & Schuster, I. Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max). Euphytica 213, 173 (2017). (PMID: 10.1007/s10681-017-1966-5) ; Flint-Garcia, S. A., Thornsberry, J. M. & Buckler, E. S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374 (2003). (PMID: 1450299510.1146/annurev.arplant.54.031902.134907) ; Glaubitz, J. C. et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014). (PMID: 24587335393867610.1371/journal.pone.0090346) ; Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010). (PMID: 20080505282810810.1093/bioinformatics/btp698) ; Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). (PMID: 21653522313721810.1093/bioinformatics/btr330) ; Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018). (PMID: 30100085612830810.1016/j.ajhg.2018.07.015) ; R Core Team. R: A language and environment for statistical computing (2020). ; Hu, Z., Olatoye, M. O., Marla, S. & Morris, G. P. An integrated genotyping-by-sequencing polymorphism map for over 10,000 sorghum genotypes. Plant Genome 12, 180044 (2019). (PMID: 10.3835/plantgenome2018.06.0044) ; Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). (PMID: 10835412146109610.1093/genetics/155.2.945) ; Chhatre, V. E. & Emerson, K. J. StrAuto: Automation and parallelization of STRUCTURE analysis. BMC Bioinform. 18, 1–5 (2017). (PMID: 10.1186/s12859-017-1593-0) ; Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). (PMID: 17701901195083810.1086/519795) ; Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012). (PMID: 23060615351945410.1093/bioinformatics/bts606) ; Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007). (PMID: 10.1093/bioinformatics/btm30817586829) ; Rambaut, A. FigTree v1.4.4 (2018). ; Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. SOFTWARE Open Access jvenn: An interactive Venn diagram viewer. BMC Bioinform. 15, 1–7 (2014). (PMID: 10.1186/1471-2105-15-293) ; Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N.Y.) 38, 1358–1370 (1984). ; Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989). (PMID: 2513255120383110.1093/genetics/123.3.585) ; Desrousseaux, D., Sandron, F., Siberchicot, A., Cierco-Ayrolles, C. & Mangin, B. LDcorSV: Linkage disequilibrium corrected by the structure and the relatedness. R package version 1.3.2 (2017). ; Endelman, J. B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J. 4, 250 (2011). (PMID: 10.3835/plantgenome2011.08.0024) ; Hill, W. G. & Weir, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol. 33, 54–78 (1988). (PMID: 337605210.1016/0040-5809(88)90004-4)
  • Substance Nomenclature: 0 (DNA, Plant)
  • Entry Date(s): Date Created: 20210204 Date Completed: 20211112 Latest Revision: 20230128
  • Update Code: 20240513
  • PubMed Central ID: PMC7859210

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -