Zum Hauptinhalt springen

Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration.

Hadj-Moussa, H ; Wade, SC ; et al.
In: Proteins, Jg. 89 (2021-05-01), Heft 5, S. 544-557
Online academicJournal

Titel:
Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration.
Autor/in / Beteiligte Person: Hadj-Moussa, H ; Wade, SC ; Childers, CL ; Storey, KB
Link:
Zeitschrift: Proteins, Jg. 89 (2021-05-01), Heft 5, S. 544-557
Veröffentlichung: New York, NY : Wiley-Liss ; <i>Original Publication</i>: New York : Alan R. Liss, c1986-, 2021
Medientyp: academicJournal
ISSN: 1097-0134 (electronic)
DOI: 10.1002/prot.26038
Schlagwort:
  • Acetylation
  • Amphibian Proteins isolation & purification
  • Amphibian Proteins metabolism
  • Animals
  • Binding Sites
  • Dehydration physiopathology
  • Droughts
  • Glyceraldehyde 3-Phosphate metabolism
  • Glyceraldehyde-3-Phosphate Dehydrogenases isolation & purification
  • Glyceraldehyde-3-Phosphate Dehydrogenases metabolism
  • Glycolysis physiology
  • Kinetics
  • Liver chemistry
  • Male
  • Methylation
  • Models, Biological
  • Models, Molecular
  • Nitroso Compounds chemistry
  • Nitroso Compounds metabolism
  • Phosphorylation
  • Polyethylene Glycols chemistry
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Structural Homology, Protein
  • Substrate Specificity
  • Thermodynamics
  • Urea chemistry
  • Amphibian Proteins chemistry
  • Dehydration metabolism
  • Glyceraldehyde 3-Phosphate chemistry
  • Glyceraldehyde-3-Phosphate Dehydrogenases chemistry
  • Liver enzymology
  • Protein Processing, Post-Translational
  • Xenopus laevis metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Proteins] 2021 May; Vol. 89 (5), pp. 544-557. <i>Date of Electronic Publication: </i>2021 Jan 06.
  • MeSH Terms: Protein Processing, Post-Translational* ; Amphibian Proteins / *chemistry ; Dehydration / *metabolism ; Glyceraldehyde 3-Phosphate / *chemistry ; Glyceraldehyde-3-Phosphate Dehydrogenases / *chemistry ; Liver / *enzymology ; Xenopus laevis / *metabolism ; Acetylation ; Amphibian Proteins / isolation & purification ; Amphibian Proteins / metabolism ; Animals ; Binding Sites ; Dehydration / physiopathology ; Droughts ; Glyceraldehyde 3-Phosphate / metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases / isolation & purification ; Glyceraldehyde-3-Phosphate Dehydrogenases / metabolism ; Glycolysis / physiology ; Kinetics ; Liver / chemistry ; Male ; Methylation ; Models, Biological ; Models, Molecular ; Nitroso Compounds / chemistry ; Nitroso Compounds / metabolism ; Phosphorylation ; Polyethylene Glycols / chemistry ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Structural Homology, Protein ; Substrate Specificity ; Thermodynamics ; Urea / chemistry
  • References: Hillman SS. The roles of oxygen delivery and electrolyte levels in the dehydrational death of Xenopus laevis. J Comp Physiol B. 1978;128:169-175. ; Hillman SS. Some effects of dehydration on internal distributions of water and solutes in Xenopus laevis. Comp Biochem Physiol Part A Physiol. 1978;61:303-307. ; Storey KB, Storey JM. Aestivation: signaling and hypometabolism. J Exp Biol. 2012;215:1425-1433. ; Merkle S. Long-term starvation in Xenopus laevis daudin-III. Effects on enzymes in several tissues. Comp Biochem Physiol Part B Comp Biochem. 1989;94:783-788. ; Merkle S, Hanke W. Long-term starvation in Xenopus laevis daudin-II. Effects on several organs. Comp Biochem Physiol Part A Physiol. 1988;90:491-495. ; Dawson NJ, Biggar Y, Malik AI, Storey KB. Increased transcript levels and kinetic function of pyruvate kinase during severe dehydration in aestivating African clawed frogs, Xenopus laevis. Comp Biochem Physiol Part B Biochem Mol Biol. 2018;224:245-252. ; Childers CL, Storey KB. Post-translational regulation of hexokinase function and protein stability in the aestivating frog Xenopus laevis. Protein J. 2016;35:61-71. ; Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med. 2018;50:34. ; Seidler NW. Basic biology of GAPDH. Adv Exp Med Biol. 2013;985:1-36. ; Iddar A, Campos LA, Sancho J, Serrano A, Soukri A. Different thermostability of skeletal muscle glyceraldehyde-3-phosphate dehydrogenase from hibernating and euthermic jerboa (Jaculus orientalis). Acta Biochim Biophys Sin (Shanghai). 2003;35:891-896. ; Bell RAV, Smith JC, Storey KB. Purification and properties of glyceraldehyde-3-phosphate dehydrogenase from the skeletal muscle of the hibernating ground squirrel, Ictidomys tridecemlineatus. PeerJ. 2014;2:e634. ; Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:255-261. ; Derouiche A, Cousin C, Mijakovic I. Protein phosphorylation from the perspective of systems biology. Curr Opin Biotechnol. 2012;23:585-590. ; Storey KB. Regulation of hypometabolism: insights into epigenetic controls. J Exp Biol. 2015;218:150-159. ; Katzenback BA, Dawson NJ, Storey KB. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis. J Comp Physiol B. 2014;184:601-611. ; Malik AI, Storey KB. Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis. J Exp Biol. 2009;212:2595-2603. ; Zhang J-Y, Zhang F, Hong C-Q, et al. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med. 2015;12:10-22. ; Chang C, Su H, Zhang D, et al. AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell. 2015;60:930-940. ; Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 2011;23:317-323. ; Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta-Gen Subj. 2011;1810:741-751. ; Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2:2212-2221. ; Biggar K, Dawson N, Storey K. Real-time protein unfolding: a method for determining the kinetics of native protein denaturation using a quantitative real-time thermocycler. Biotechniques. 2012;53:231-238. ; Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296-W303. ; Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics. 2020;36:1765-1771. ; Chen VB, Arendall WB, Headd JJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr. 2010;66:12-21. ; Brooks S. A program for analyzing enzyme rate data obtained from a microplate reader. Biotexhniques. 1994;17:1154-1161. ; Brooks S. A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques. 1992;13:906-911. ; Zhang J, Storey KB. RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry. PeerJ. 2016;4:e2436. ; Gatten RE. Activity metabolism of anuran amphibians: tolerance to dehydration. Physiol Zool. 1987;60:576-585. ; Hillman SS. Dehydrational effects on cardiovascular and metabolic capacity in two amphibians. Physiol Zool. 1987;60:608-613. ; Churchill TA, Storey KB. Metabolic responses to dehydration by liver of the wood frog, Rana sylvatica. Can J Zool. 1994;72:1420-1425. ; Fourrat L, Iddar A, Soukri A. Purification and characterization of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the dromedary camel. Acta Biochim Biophys Sin (Shanghai). 2007;39:148-154. ; Baibai T, Oukhattar L, Moutaouakkil A, Soukri A. Purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from European pilchard Sardina pilchardus. Acta Biochim Biophys Sin (Shanghai). 2007;39:947-954. ; Hillman SS, Sommerfeldt RW. Microsphere studies of amphibian systemic blood flow redistribution during dehydration, hypovolemia, and salt load. J Exp Zool. 1981;218:305-308. ; Churchill TA, Storey KB. Effects of dehydration on organ metabolism in the frog Pseudacris crucifer: hyperglycemic responses to dehydration mimic freezing-induced cryoprotectant production. J Comp Physiol B. 1994;164:492-498. ; Edwards JR, Jenkins JL, Swanson DL. Seasonal effects of dehydration on glucose mobilization in freeze-tolerant chorus frogs (Pseudacris triseriata) and freeze-intolerant toads (Bufo woodhousii and B. cognatus). J Exp Zool. 2004;301A:521-531. ; Wu C-W, Tessier SN, Storey KB. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis. Biochem Cell Biol. 2017;95:663-697. ; Hawkins LJ, Luu BE, Storey KB. Selection of reference genes for accurate RT-qPCR analysis of dehydration tolerance in Xenopus laevis. Gene Reports. 2018;13:192-198. ; Yego ECK, Mohr S. Siah-1 protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Müller cells. J Biol Chem. 2010;285:3181-3190. ; Sheng W-Y, Wang T-CV. Proteomic analysis of the differential protein expression reveals nuclear GAPDH in activated T lymphocytes. PLoS One. 2009;4:e6322. ; Lee MN, Ha SH, Kim J, et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol. 2009;29:3991-4001. ; Kim J-R, Yoon HW, Kwon K-S, Lee S-R, Rhee SG. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem. 2000;283:214-221. ; Cochrane CG. Mechanisms of oxidant injury of cells. Mol Aspects Med. 1991;12:137-147. ; Stumpe MC, Grubmüller H. Interaction of urea with amino acids: implications for urea-induced protein denaturation. J Am Chem Soc. 2007;129:16126-16131. ; Pérez VI, Buffenstein R, Masamsetti V, et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. PNAS. 2009;106:3059-3064. ; Balinsky JB, Cragg MM, Baldwin E. The adaptation of amphibian waste nitrogen excretion to dehydration. Comp Biochem Physiol. 1961;3:236-244. ; Childers CL, Storey KB. Purification and characterization of a urea sensitive lactate dehydrogenase from skeletal muscle of the African clawed frog, Xenopus laevis. J Comp Physiol B. 2019;189:271-281. ; Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and polo-like kinase activities in mitotic cells. Sci Signal. 2011;4:rs5-rs5. ; Tisdale EJ, Talati NK, Artalejo CR, Shisheva A. GAPDH binds Akt to facilitate cargo transport in the early secretory pathway. Exp Cell Res. 2016;349:310-319. ; Yogalingam G, Hwang S, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem. 2013;288:18947-18960. ; Hawkins LJ, Wang M, Zhang B, Xiao Q, Wang H, Storey KB. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog. Comp Biochem Physiol Part D Genomics Proteomics. 2019;30:1-13. ; Lanouette S, Mongeon V, Figeys D, Couture J. The functional diversity of protein lysine methylation. Mol Syst Biol. 2014;10:724. ; Forcina BG, Ferri G, Zapponi MC, Ronchi S. Identification of lysines reactive with pyridoxal 5′-phosphate in glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1971;20:535-540. ; Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science (80). 2010;327:1004-1007. ; Bond ST, Howlett KF, Kowalski GM, et al. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism. FASEB J. 2017;31:2592-2602. ; Li T, Liu M, Feng X, et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem. 2014;289:3775-3785. ; Ventura M, Mateo F, Serratosa J, et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol. 2010;42:1672-1680. ; Sen N, Hara MR, Kornberg MD, et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol. 2008;10:866-873. ; Hara MR, Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol Neurobiol. 2006;26:525-536. ; Chuang D-M, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2005;45:269-290. ; Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Biochim Biophys Acta-Proteins Proteomics. 2009;1794:254-262. ; Fisi V, Miseta A, Nagy T. The role of stress-induced O-GlcNAc protein modification in the regulation of membrane transport. Oxid Med Cell Longev. 2017;2017:1-15.
  • Contributed Indexing: Keywords: African clawed frog; Xenopus laevis; glyceraldehyde-3-phosphate dehydrogenase
  • Substance Nomenclature: 0 (Amphibian Proteins) ; 0 (Nitroso Compounds) ; 142-10-9 (Glyceraldehyde 3-Phosphate) ; 3WJQ0SDW1A (Polyethylene Glycols) ; 8W8T17847W (Urea) ; EC 1.2.1.- (Glyceraldehyde-3-Phosphate Dehydrogenases)
  • Entry Date(s): Date Created: 20201228 Date Completed: 20210907 Latest Revision: 20210907
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -