Zum Hauptinhalt springen

Escherichia coli is engineered to grow on CO <subscript>2</subscript> and formic acid.

Bang, J ; Hwang, CH ; et al.
In: Nature microbiology, Jg. 5 (2020-12-01), Heft 12, S. 1459
Online academicJournal

Titel:
Escherichia coli is engineered to grow on CO <subscript>2</subscript> and formic acid.
Autor/in / Beteiligte Person: Bang, J ; Hwang, CH ; Ahn, JH ; Lee, JA ; Lee, SY
Link:
Zeitschrift: Nature microbiology, Jg. 5 (2020-12-01), Heft 12, S. 1459
Veröffentlichung: [London] : Nature Publishing Group, [2016]-, 2020
Medientyp: academicJournal
ISSN: 2058-5276 (electronic)
DOI: 10.1038/s41564-020-00793-9
Schlagwort:
  • Escherichia coli growth & development
  • Escherichia coli Proteins genetics
  • Escherichia coli Proteins metabolism
  • Formate Dehydrogenases genetics
  • Formate Dehydrogenases metabolism
  • Metabolic Engineering
  • Oxidoreductases genetics
  • Oxidoreductases metabolism
  • Carbon Dioxide metabolism
  • Escherichia coli genetics
  • Escherichia coli metabolism
  • Formates metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Microbiol] 2020 Dec; Vol. 5 (12), pp. 1459-1463. <i>Date of Electronic Publication: </i>2020 Sep 28.
  • MeSH Terms: Carbon Dioxide / *metabolism ; Escherichia coli / *genetics ; Escherichia coli / *metabolism ; Formates / *metabolism ; Escherichia coli / growth & development ; Escherichia coli Proteins / genetics ; Escherichia coli Proteins / metabolism ; Formate Dehydrogenases / genetics ; Formate Dehydrogenases / metabolism ; Metabolic Engineering ; Oxidoreductases / genetics ; Oxidoreductases / metabolism
  • References: Kumar, A. et al. Enhanced CO 2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380 (2010). (PMID: 10.1016/j.tibtech.2010.04.004) ; Singh, A. K., Kishore, G. M. & Pakrasi, H. B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr. Opin. Biotechnol. 53, 201–208 (2018). (PMID: 10.1016/j.copbio.2018.02.002) ; Tashiro, Y., Hirano, S., Matson, M. M., Atsumi, S. & Kondo, A. Electrical-biological hybrid system for CO 2 reduction. Metab. Eng. 47, 211–218 (2018). (PMID: 10.1016/j.ymben.2018.03.015) ; Yishai, O., Bouzon, M., Döring, V. & Bar-Even, A. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth. Biol. 7, 2023–2028 (2018). (PMID: 10.1021/acssynbio.8b00131) ; Döring, V., Darii, E., Yishai, O., Bar-Even, A. & Bouzon, M. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS Synth. Biol. 7, 2029–2036 (2018). (PMID: 10.1021/acssynbio.8b00167) ; Innocent, B. et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J. Appl. Electrochem. 39, 227 (2009). (PMID: 10.1007/s10800-008-9658-4) ; Agarwal, A. S., Zhai, Y., Hill, D. & Sridhar, N. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4, 1301–1310 (2011). (PMID: 10.1002/cssc.201100220) ; Boddien, A. et al. CO 2 -“neutral” hydrogen storage based on bicarbonates and formates. Angew. Chem. Int. Ed. 50, 6411–6414 (2011). (PMID: 10.1002/anie.201101995) ; Bang, J. & Lee, S. Y. Assimilation of formic acid and CO 2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl Acad. Sci. USA 115, E9271–E9279 (2018). (PMID: 10.1073/pnas.1810386115) ; Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO 2 . Cell 179, 1255–1263 (2019). (PMID: 10.1016/j.cell.2019.11.009) ; Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020). (PMID: 10.1038/s41589-020-0473-5) ; Jeong, K. J. & Lee, S. Y. Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl. Environ. Microbiol. 69, 1295–1298 (2003). (PMID: 10.1128/AEM.69.2.1295-1298.2003) ; Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). (PMID: 10.1038/nmeth.1318) ; Song, C. W. & Lee, S. Y. Rapid one-step inactivation of single or multiple genes in Escherichia coli. Biotechnol. J. 8, 776–784 (2013). (PMID: 10.1002/biot.201300153)
  • Substance Nomenclature: 0 (Escherichia coli Proteins) ; 0 (Formates) ; 0YIW783RG1 (formic acid) ; 142M471B3J (Carbon Dioxide) ; EC 1.- (Oxidoreductases) ; EC 1.10.99.- (ubiquinol oxidase) ; EC 1.17.1.9 (Formate Dehydrogenases)
  • Entry Date(s): Date Created: 20200929 Date Completed: 20210226 Latest Revision: 20210824
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -