Zum Hauptinhalt springen

Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire.

Oumbouke, WA ; Pignatelli, P ; et al.
In: Scientific reports, Jg. 10 (2020-09-15), Heft 1, S. 15066
Online academicJournal

Titel:
Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire.
Autor/in / Beteiligte Person: Oumbouke, WA ; Pignatelli, P ; Barreaux, AMG ; Tia, IZ ; Koffi, AA ; Ahoua Alou, LP ; Sternberg, ED ; Thomas, MB ; Weetman, D ; N'Guessan, R
Link:
Zeitschrift: Scientific reports, Jg. 10 (2020-09-15), Heft 1, S. 15066
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2020
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-71933-8
Schlagwort:
  • Animals
  • Cote d'Ivoire
  • Mosquito Control
  • Anopheles enzymology
  • Anopheles genetics
  • Carboxylesterase genetics
  • Carboxylesterase metabolism
  • Cytochrome P-450 Enzyme System genetics
  • Cytochrome P-450 Enzyme System metabolism
  • Insect Proteins genetics
  • Insect Proteins metabolism
  • Insecticide Resistance genetics
  • Insecticides pharmacology
  • Nitriles pharmacology
  • Pyrethrins pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2020 Sep 15; Vol. 10 (1), pp. 15066. <i>Date of Electronic Publication: </i>2020 Sep 15.
  • MeSH Terms: Anopheles* / enzymology ; Anopheles* / genetics ; Carboxylesterase* / genetics ; Carboxylesterase* / metabolism ; Cytochrome P-450 Enzyme System* / genetics ; Cytochrome P-450 Enzyme System* / metabolism ; Insect Proteins* / genetics ; Insect Proteins* / metabolism ; Insecticide Resistance / *genetics ; Insecticides / *pharmacology ; Nitriles / *pharmacology ; Pyrethrins / *pharmacology ; Animals ; Cote d'Ivoire ; Mosquito Control
  • References: Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015). (PMID: 263750084820050) ; Reid, M. C. & McKenzie, F. E. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar. J. 15, 107 (2016). (PMID: 268959804759738) ; Czeher, C., Labbo, R., Arzika, I. & Duchemin, J.-B. Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar. J. 7, 189 (2008). (PMID: 188175742562389) ; Ngufor, C. et al. Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria. Sci. Transl. Med. 8, 356 (2016). ; N’Guessan, R. et al. A chlorfenapyr mixture net interceptor G2 Shows high efficacy and wash durability against resistant mosquitoes in West Africa. PLoS ONE 11, e0165925 (2016). (PMID: 278518285112870) ; Protopopoff, N. et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two fact. The Lancet 391, 1577–1588 (2018). ; Oxborough, R. M. et al. A new class of insecticide for malaria vector control: evaluation of mosquito nets treated singly with indoxacarb (oxadiazine) or with a pyrethroid mixture against Anopheles gambiae and Culex quinquefasciatus. Malar. J. 14, 353 (2015). (PMID: 263779304573922) ; Ngufor, C. et al. Which intervention is better for malaria vector control: insecticide mixture long-lasting insecticidal nets or standard pyrethroid nets combined with indoor residual spraying?. Malar. J. 16, 340 (2017). (PMID: 288143075559808) ; Ngufor, C., Fongnikin, A., Rowland, M. & N’Guessan, R. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin. PLoS ONE 12, e0189575 (2017). (PMID: 292529865734732) ; Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet. 10, e1004236 (2014). (PMID: 246512943961184) ; Toé, K. H., N’Falé, S., Dabiré, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genom. 16, 146 (2015). ; Antonio-Nkondjio, C. et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasites Vectors 10, 472 (2017). (PMID: 290175905635606) ; Lynd, A. et al. Insecticide resistance in Anopheles gambiae from the northern Democratic Republic of Congo, with extreme knockdown resistance (kdr) mutation frequencies revealed by a new diagnostic assay. Malar. J. 17, 412 (2018). (PMID: 304008856219172) ; Govere, J. et al. Insecticide resistance status of the malaria mosquitoes: Anopheles gambiae and Anopheles funestus in eastern and northern Uganda. Malar. J. 17, 1–12 (2018). ; Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 7, 179–184 (1998). (PMID: 9535162) ; Ranson, H. et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol. 9, 491–497 (2000). (PMID: 11029667) ; Jones, C. M. et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc. Natl. Acad. Sci. 109, 6614–6619 (2012). (PMID: 22493253) ; Wang, L. et al. A Mutation in the intracellular loop III / IV of mosquito sodium channel synergizes the effect of mutations in Helix IIS6 on pyrethroid resistance. Mol. Pharmacol. 87, 421–429 (2015). (PMID: 255230314352587) ; Djogbénou, L. et al. Characterization of insensitive acetylcholinesterase (ace-1 R ) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J. Med. Entomol. 44, 805–810 (2007). (PMID: 17915512) ; Essandoh, J., Yawson, A. E. & Weetman, D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malaria Journal 12, 404 (2013). (PMID: 242066293842805) ; Edi, C. V. A., Koudou, B. G., Jones, C. M., Weetman, D. & Ranson, H. Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Côte d’Ivoire. Emerg. Infect. Dis. 18, 1508–1511 (2012). (PMID: 229324783437712) ; Djogbénou, L., Noel, V. & Agnew, P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar. J. 9, 12 (2010). (PMID: 200708912816975) ; Djogbénou, L. et al. Ace-1 duplication in Anopheles gambiae: a challenge for malaria control. Malar. J. 8, 70 (2009). (PMID: 193747672679766) ; Duangkaew, P. et al. Characterization of mosquito cyp6p7 and cyp6aa3: differences in substrate preference and kinetic properties. Arch. Insect Biochem. Physiol. 76, 236–248 (2011). (PMID: 21308761) ; Riveron, J. M. et al. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc. Natl. Acad. Sci. USA 110, 252–257 (2012). (PMID: 23248325) ; Riveron, J. M. et al. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genom. 15, 817 (2014). ; Mitchell, S. N. et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. USA 109, 6147–6152 (2012). (PMID: 22460795) ; Vontas, J. et al. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. Proc. Natl. Acad. Sci. USA 115, 4619–4624 (2018). (PMID: 29674455) ; Camara, S. et al. Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d’Ivoire. Parasites Vectors 11, 19 (2018). (PMID: 293107045759872) ; Koffi, A. A. et al. Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site “Yaokoffikro”, 6 years after the political crisis in Côte d’Ivoire. Parasites & Vectors 5, 68 (2012). ; Sternberg, E. D. et al. Evaluating the impact of screening plus eave tubes on malaria transmission compared to current best practice in central Côte d’Ivoire: a two armed cluster randomized controlled trial. BMC Public Health 18, 894 (2018). (PMID: 300215436052618) ; Zoh, D. D. et al. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké, Côte d’Ivoire. Parasites Vectors 11, 118 (2018). (PMID: 294997205834858) ; Bagi, J. et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malaria Journal 14, 210 (2015). (PMID: 259858964455279) ; Donnelly, M. J., Isaacs, A. T. & Weetman, D. Identification, validation, and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends Parasitol. 32, 197–206 (2016). (PMID: 26750864) ; Stevenson, B. J. et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. Insect Biochem. Mol. Biol. 41, 492–502 (2011). (PMID: 21324359) ; Ngufor, C. et al. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products. Malar. J. 14, 464 (2015). (PMID: 265816784652434) ; Chandor-Proust, A. et al. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural mode. Biochem. J. 455, 75–85 (2013). (PMID: 238449383778711) ; Hemingway, J. et al. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin. Insect Mol. Biol. 15, 321–327 (2006). (PMID: 16756551) ; Mitchell, S. N. et al. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PLoS ONE 9, e92662 (2014). (PMID: 246757973968025) ; Edi, A. V. C. et al. First detection of N1575Y mutation in pyrethroid resistant Anopheles gambiae in Southern Côte d’Ivoire. Wellcome Open Res. 2, 71 (2017). (PMID: 290188425627500) ; Deming, R. et al. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites Vectors 9, 67 (2016). (PMID: 268464684743324) ; Matowo, N. S. et al. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res. 2, 96 (2017). (PMID: 294170945782413) ; Yunta, C. et al. Pyriproxyfen is metabolized by P450s associated with pyrethroid resistance in An. gambiae. Insect Biochem. Mol. Biol. 78, 50–57 (2016). (PMID: 276135926399515) ; Koffi, A. A. et al. Efficacy of Olyset Duo, a permethrin and pyriproxyfen mixture net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: an experimental hut trial. Parasite 22, 28 (2015). (PMID: 264894804613874) ; Tiono, A. B. et al. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet 392, 569–580 (2018). (PMID: 30104047) ; Oumbouke, W. A. et al. Screening and field performance of powder-formulated insecticides on eave tube inserts against pyrethroid resistant Anopheles gambiae s.l.: an investigation into ‘actives’ prior to a randomized controlled trial in Côte d’Ivoire. Malar. J. 17, 374 (2018). (PMID: 303481546196564) ; Diakité, N. R., Adja, A. M., Von Stamm, T., Utzinger, J. & N’Goran, E. K. Situation épidémiologique avant la mise en eau du barrage hydroagricole de cinq villages de Bouaké, Centre Côte-d’Ivoire. Bull. Soc. Pathol. Exotique 103, 22–28 (2010). ; Diakité, N. R. et al. Spatial and temporal variation of malaria entomological parameters at the onset of a hydro-agricultural development in central Côte d’Ivoire. Malar. J. 14, 1–11 (2015). ; Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008). (PMID: 187248712546427) ; Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malaria Journal 6, 111 (2007). (PMID: 176973251971715) ; Bass, C. et al. The Vector Population Monitoring Tool (VPMT): high-throughput DNA-based diagnostics for the monitoring of mosquito vector populations. Malar. Res. Treat. 2010, 190434 (2010). (PMID: 223476683276000) ; Weetman, D., Djogbenou, L. S. & Lucas, E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem?. Curr. Opin. Insect Sci. 27, 82–88 (2018). (PMID: 300256396056009) ; Djogbénou, L. S. et al. Estimation of allele-specific Ace-1 duplication in insecticide-resistant Anopheles mosquitoes from West Africa. Malar. J. 14, 507 (2015). (PMID: 266829134683970) ; WHO. Guidelines for Laboratory and Field Testing of Long-Lasting Insecticidal Mosquito Nets (World Health Organization Organisation, Geneva, 2013). ; Raymond, M. & Rousset, F. GENEPOP (Version 12): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995). ; Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008). (PMID: 21585727) ; Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008). (PMID: 18546601)
  • Substance Nomenclature: 0 (Insect Proteins) ; 0 (Insecticides) ; 0 (Nitriles) ; 0 (Pyrethrins) ; 2JTS8R821G (decamethrin) ; 9035-51-2 (Cytochrome P-450 Enzyme System) ; EC 3.1.1.1 (Carboxylesterase)
  • Entry Date(s): Date Created: 20200916 Date Completed: 20201211 Latest Revision: 20210915
  • Update Code: 20240513
  • PubMed Central ID: PMC7493912

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -