Zum Hauptinhalt springen

Precise test of quantum electrodynamics and determination of fundamental constants with HD <superscript>+</superscript> ions.

Alighanbari, S ; Giri, GS ; et al.
In: Nature, Jg. 581 (2020-05-01), Heft 7807, S. 152-158
Online academicJournal

Titel:
Precise test of quantum electrodynamics and determination of fundamental constants with HD <superscript>+</superscript> ions.
Autor/in / Beteiligte Person: Alighanbari, S ; Giri, GS ; Constantin, FL ; Korobov, VI ; Schiller, S
Link:
Zeitschrift: Nature, Jg. 581 (2020-05-01), Heft 7807, S. 152-158
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2020
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-020-2261-5
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2020 May; Vol. 581 (7807), pp. 152-158. <i>Date of Electronic Publication: </i>2020 May 06.
  • References: Karshenboim, S. G. (ed.) Precision Physics of Simple Atoms and Molecules (Springer-Verlag, 2008). ; Pachucki, K., Patkóš, V. & Yerokhin, V. A. Testing fundamental interactions on the helium atom. Phys. Rev. A 95, 062510 (2017). ; Leach, C. A. & Moss, R. E. Spectroscopy and quantum mechanics of the hydrogen molecular cation: a test of molecular quantum mechanics. Annu. Rev. Phys. Chem. 46, 55–82 (1995). (PMID: 24328942) ; Roth, B. et al. in Precision Physics of Simple Atoms and Molecules (ed. Karshenboim, S. G.) 205–232 (Springer-Verlag, 2008). ; Wing, W. H., Ruff, G. A., Lamb, W. E. & Spezeski, J. J. Observation of the infrared spectrum of the hydrogen molecular ion HD + . Phys. Rev. Lett. 36, 1488–1491 (1976). ; Arcuni, P. W., Fu, Z. W. & Lundeen, S. R. Energy difference between the (ν = 0, R = 1) and the (ν = 0, R = 3) states of [Formula: see text], measured with interseries microwave spectroscopy of H 2 Rydberg states. Phys. Rev. A 42, 6950–6953 (1990). (PMID: 9904007) ; Carrington, A., McNab, I. R., Montgomerie-Leach, C. A. & Kennedy, R. A. Vibration-rotation spectroscopy of the HD + ion near the dissociation limit. Mol. Phys. 72, 735–762 (1991). ; Fu, Z. W., Hessels, E. A. & Lundeen, S. R. Determination of the hyperfine structure of [Formula: see text] (ν = 0, R = 1) by microwave spectroscopy of high-L, n = 27 Rydberg states of H 2 . Phys. Rev. A 46, R5313–R5316 (1992). (PMID: 9908882) ; Critchley, A. D. J., Hughes, A. N. & McNab, I. R. Direct measurement of a pure rotation transition in [Formula: see text]. Phys. Rev. Lett. 86, 1725–1728 (2001). (PMID: 11290233) ; Osterwalder, A., Wüest, A., Merkt, F. & Jungen, C. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen [Formula: see text]. J. Chem. Phys. 121, 11810–11838 (2004). (PMID: 15634145) ; Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD + with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007). ; Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD + frequency metrology. Phys. Rev. Lett. 108, 183003 (2012). (PMID: 22681070) ; Haase, C., Beyer, M., Jungen, C. & Merkt, F. The fundamental rotational interval of para-[Formula: see text] by MQDT-assisted Rydberg spectroscopy of H 2 . J. Chem. Phys. 142, 064310 (2015). (PMID: 25681909) ; Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD + . Nat. Commun. 7, 10385 (2016). (PMID: 268158864737800) ; Korobov, V. I., Hilico, L. & Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017). (PMID: 28644635) ; Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018). ; Jefferts, K. B. Hyperfine structure in the molecular ion [Formula: see text]. Phys. Rev. Lett. 23, 1476–1478 (1969). ; Schiller, S. & Korobov, V. I. Test of time-dependence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005). ; Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); erratum 116, 777–778 (2014). ; Karr, J.-Ph. [Formula: see text] and HD + : candidates for a molecular clock. J. Mol. Spectrosc. 300, 37–43 (2014). ; Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014). (PMID: 25062175) ; Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017). (PMID: 28983046) ; Fleurbaey, H. et al. New measurement of the 1S−3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018). (PMID: 29775374) ; Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019). (PMID: 31488684) ; Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013). (PMID: 23349284) ; Grémaud, B., Delande, D. & Billy, N. Highly accurate calculation of the energy levels of the [Formula: see text] molecular ion. J. Phys. B 31, 383 (1998). ; Moss, R. E. Energies of low-lying vibration-rotation levels of [Formula: see text] and its isotopomers. J. Phys. B 32, L89–L91 (1999). ; Taylor, J. M., Yan, Z.-C., Dalgarno, A. & Babb, J. F. Variational calculations on the hydrogen molecular ion. Mol. Phys. 97, 25–33 (1999). ; Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. Values of fundamental physical constants. NIST https://physics.nist.gov/cuu/Constants/index.html (2019). ; Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016). (PMID: 26855427) ; Chou, C. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017). (PMID: 28492258) ; Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275–278 (2010). ; Roth, B., Blythe, P., Wenz, H., Daerr, H. & Schiller, S. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution. Phys. Rev. A 73, 042712 (2006). ; Schiller, S., Roth, B., Lewen, F., Ricken, O. & Wiedner, M. Ultra-narrow-linewidth continuous-wave THz sources based on multiplier chains. Appl. Phys. B 95, 55–61 (2009). ; Bakalov, D., Korobov, V. I. & Schiller, S. High-precision calculation of the hyperfine structure of the HD + ion. Phys. Rev. Lett. 97, 243001 (2006). (PMID: 17280275) ; Schiller, S. & Korobov, V. I. Canceling spin-dependent contributions and systematic shifts in precision spectroscopy of molecular hydrogen ions. Phys. Rev. A 98, 022511 (2018). ; Bakalov, D., Korobov, V. I. & Schiller, S. Magnetic field effects in the transitions of the HD + molecular ion and precision spectroscopy. J. Phys. B 44, 025003 (2011); corrigendum 45, 049501 (2012). ; Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-P. Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016). (PMID: 26894709) ; Menasian, S. C. & Dehmelt, H. G. High-resolution study of (1,1/2,1/2)−(1,1/2,3/2) HFS transition in [Formula: see text]. Bull. Am. Phys. Soc. 18, 408 (1973). ; Heiße, F. et al. High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518 (2019). ; Fink, D. J. & Myers, E. G. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of [Formula: see text] to D + with [Formula: see text] in a resolved vibrational state. Phys. Rev. Lett. 124, 013001 (2020). (PMID: 31976707) ; Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014). (PMID: 24553144) ; Pastor, P. C. et al. Absolute frequency measurements of the 2 3 S 1 → 2 3 P 0,1,2 atomic helium transitions around 1083 nm. Phys. Rev. Lett. 92, 023001 (2004). (PMID: 14753933) ; Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610–614 (2016). (PMID: 27811273) ; Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018). ; Hori, M. et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484–488 (2011). (PMID: 21796208) ; Udem, T. Quantum electrodynamics and the proton size. Nat. Phys. 14, 632–632 (2018); correction 14, 767 (2018). ; Schiller, S., Bakalov, D., Bekbaev, A. K. & Korobov, V. I. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions [Formula: see text], HD + , and [Formula: see text]. Phys. Rev. A 89, 052521 (2014). ; Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in Paul trap. J. Appl. Phys. 83, 5025–5033 (1998). ; Shen, J., Borodin, A. & Schiller, S. A simple method for characterization of the magnetic field in an ion trap using Be + ions. Eur. Phys. J. D 68, 359 (2014). ; Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); corrigendum 116, 777–778 (2014). ; Salumbides, E. J., Ubachs, W. & Korobov, V. I. Bounds on fifth forces at the sub-Å length scale. J. Mol. Spectrosc. 300, 65–69 (2014). ; Pavanello, M., Tung, W.-C. & Adamowicz, L. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D 2 and HD. Phys. Rev. A 81, 042526 (2010).
  • Grant Information: International ERC_ European Research Council
  • Entry Date(s): Date Created: 20200515 Date Completed: 20200615 Latest Revision: 20210128
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -